
 
Proceedings of the Tensinet Symposium 2023 

TENSINANTES2023  7-9 June 2023, Nantes Université, Nantes, France 

Jean-Christophe Thomas, Marijke Mollaert, Carol Monticelli, Bernd Stimpfle (Eds.) 

 

The calculation of large cable reinforced gas storage systems 

Juergen Holl*, Peter Singera, Dieter Stroebelb 

*technet GmbH, Breitscheidstraße 4 

Stuttgart 70174, 

Germany, juergen.holl@technet-gmbh.com 

 

Abstract 

Today, computer models play an important role in the calculation of textile membrane and foil 

structures. In order to derive high-quality results from a model, the software used must enable 

a description of a structure that is as accurate and complete as possible. For pneumatically 

tensioned structures, the creation of the models and the static calculation is a challenge in many 

cases. A static calculation for membranes and foil structures is geometrically non-linear. The 

calculation requires the unstressed geometry and the material properties for all elements of the 

model. For the load case calculation, the external loads and, for pneumatic structures, also the 

internal pressures or volume data are required. Additional boundary conditions for pneumatic 

structures are that the loads are deformation-dependent and that the gas law must be considered 

in certain load cases. If the stresses in the membrane become so big that even the strongest 

membrane material can no longer bear the stresses, then the membrane must be reinforced with 

cable nets. 

In this paper we show how in our software package the cable net reinforcements can be 

modelled together with the membrane in one system and then calculated. The cable net can 

slide on the membrane surface. In this way, it is possible to model the reality accurately.   

Keywords: Pneumatic systems, gas storage, cable net, reinforcement. 

1. Introduction 

The calculation of pneumatic membrane structures includes form-finding, statics and cutting 

patterns. This paper deals with cable net reinforced pneumatic membranes, which are 

indispensable above a certain size in order to keep the membrane stresses within limits; 

sometimes, for example, also belts are used for gas holders (e.g. Forster B. and Mollaert). 

Before we now present the individual steps in the generation of cable-mesh-reinforced 

pneumatic structures, we will discuss form-finding theory and the statics of pneumatic 
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structures. Subsequently, we will show how arbitrary cable nets can be designed on the 

pneumatic surface and how the overall system, i.e. membrane and cable-net, is calculated. 

2. Formfinding for Pneumatics 

The theory of the form finding of mechanically and pneumatically membrane or foil structures 

has its basics in the well-known Force-Density Method (e.g. Stroebel and Holl). By specifying 

force densities (ratio between force S and stressed length l), the non-linear equilibrium 

equations become linear and can be solved without specifying initial values. 

 

 

Figure 1: Four cables in point C 

In the case of a point C connected by 4 cables to fixed points 1,2,3 and 4, the equilibrium 

conditions are as follows, where the external load vector can be expressed 𝒑𝑡 = (𝑝𝑥 𝑝𝑦 𝑝𝑧) 

(e.g. Ströbel, D. and Singer, P. et al). 
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If one specifies known force densities in (1), e.g. 𝑞1 =
𝑆1

𝑙1
, and analogue for q2, q3 and q4, then 

the equations become linear and result in: 

(𝑥𝑐 − 𝑥1)𝑞1 + (𝑥𝑐 − 𝑥2)𝑞2 + (𝑥𝑐 − 𝑥3)𝑞3 + (𝑥𝑐 − 𝑥4)𝑞4 = 𝑝𝑥

(𝑦𝑐 − 𝑦1)𝑞1 + (𝑦𝑐 − 𝑦2)𝑞2 + (𝑦𝑐 − 𝑦3)𝑞3 + (𝑦𝑐 − 𝑦4)𝑞4 = 𝑝𝑦

(𝑧𝑐 − 𝑧1)𝑞1 + (𝑧𝑐 − 𝑧2)𝑞2 + (𝑧𝑐 − 𝑧3)𝑞3 + (𝑧𝑐 − 𝑧4)𝑞4 = 𝑝𝑧

 (2) 

 

The coordinates of the point C (𝑥𝑐 , 𝑦𝑐, 𝑧𝑐) are the solution of these linear equations. In the 

following step we want to write the system above by considering m neighbours in the point C: 
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∑(𝑥𝑖 − 𝑥𝑐)𝑞𝑖 − 𝑝𝑥

𝑚

𝑖=1

= 0

∑(𝑦𝑖 − 𝑦𝑐)𝑞𝑖 − 𝑝𝑦

𝑚

𝑖=1

= 0

∑(𝑧𝑖 − 𝑧𝑐)𝑞𝑖 − 𝑝𝑧

𝑚

𝑖=1

= 0

 (3) 

 

The energy which belongs to the system (1) can be written as: 

∏ =
1

2
𝒗𝑡𝑹𝒗 − 𝑝𝑥(𝑥 − 𝑥0) − 𝑝𝑦(𝑦 − 𝑦0) − 𝑝𝑧(𝑧 − 𝑧0) ⇒ 𝑠𝑡𝑎𝑡. (4) 

 

The internal energy is the expression 
1

2
𝒗𝑡𝑹𝒗. The vector 𝒗𝑡 = (𝑣𝑥 𝑣𝑦 𝑣𝑧)   and the matrix 

𝑹 = 𝑑𝑖𝑎𝑔(𝑞𝑖 𝑞𝑖 𝑞𝑖) show this energy with respect to a single line element i  .We can write 

the inner energy as 
1

2
𝑞𝑖(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2),  precisely:  

 

𝑣𝑥 = 𝑥𝑖 − 𝑥𝑐

𝑣𝑦 = 𝑦𝑖 − 𝑦𝑐

𝑣𝑧 = 𝑧𝑖 − 𝑧𝑐

            𝑹 = [

𝑞𝑖 0 0

𝑞𝑖 0

𝑠𝑦𝑚. 𝑞𝑖

] (5) 

 

The chamber of a pneumatic structure has a volume V, which is made by an internal pressure 

pi. The product from internal pressure and volume is a part of the total energy  : a given 

volume V0 leads directly to a specific internal pressure pi: hence the total energy for the form-

finding of a pneumatic chamber is 

 

∏ =
1

2
𝒗𝑡𝑹𝒗 − 𝑝𝑥(𝑥 − 𝑥0) − 𝑝𝑦(𝑦 − 𝑦0) − 𝑝𝑧(𝑧 − 𝑧0) − 𝑝𝑖(𝑉 − 𝑉0) ⇒ 𝑠𝑡𝑎𝑡. (6) 

 

The derivation of the total energy to the unknown coordinates and to the unknown internal 

pressure ends up with 
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𝜕∏

𝜕𝑥
= ∑(𝑥𝑖 − 𝑥𝑐)𝑞𝑖 − 𝑝𝑥 − 𝑝𝑖

𝜕𝑉

𝜕𝑥

𝑚

𝑖=1

= 0

𝜕∏

𝜕𝑦
= ∑(𝑦𝑖 − 𝑦𝑐)𝑞𝑖 − 𝑝𝑦 − 𝑝𝑖

𝜕𝑉

𝜕𝑦

𝑚

𝑖=1

= 0

𝜕∏

𝜕𝑧
= ∑(𝑧𝑖 − 𝑧𝑐)𝑞 𝑖 − 𝑝𝑧 − 𝑝𝑖

𝜕𝑉

𝜕𝑧

𝑚

𝑖=1

= 0

𝜕∏

𝜕𝑝𝑖

= 𝑉 − 𝑉0 = 0

 (7) 

 

In the system (6) the internal pressure pi can be seen as a so-called Lagrange multiplier. The 

fourth row in (7) shows, that our boundary condition 𝑉 = 𝑉0 is obtained by the derivation of the 

energy to this Lagrange multiplier. The vector  (
𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑦

𝜕𝑉

𝜕𝑧
) describes the normal direction in 

the point (x, y, z) and the size is the according area. By a set of given force-densities for all 

elements and a given volume V0 we end up with a pre-stressed and of course balanced 

pneumatic system with a volume V0 and an internal pressure pi. 

 

3. Statics for Pneumatics 

By introducing the constitutive equations for the membrane elements into the system (1), we 

extend the form-finding theory. Now the force-densities q from the form-finding are unknowns 

and they belong to the material equations. 

 

[
𝜎𝑢

𝜎𝑢

𝜏
] = [

𝑚11 𝑚12 0

𝑚22 0

𝑠𝑦𝑚. 𝑚33

] [

𝜀𝑢

𝜀𝑣

𝛥𝛾
] (8) 

 

We must consider that the membrane axial-stress in u- or v- direction can be expressed as 𝜎𝑢 =
𝑆𝑢

𝑏𝑢
 and 𝜎𝑣 =

𝑆𝑣

𝑏𝑣
. bu and bv are the widths of the u- and v-lines. The force-densities q can be 

introduced now as: 𝑆𝑢 = 𝑞𝑢𝑙𝑢 and 𝑆𝑣 = 𝑞𝑣𝑙𝑣. The strains in u- and v-direction can be written 

as follows: 𝜀𝑢 =
𝑙𝑢−𝑙𝑢0

𝑙𝑢0
 and 𝜀𝑣 =

𝑙𝑣−𝑙𝑣0

𝑙𝑣0
 . The angle difference 𝛥𝛾 = 𝛾 − 𝛾0 is needed for the 

shear-stress calculation. 𝛾 is the angle between u and v-direction;  𝛾0refers to the ‘non-deformed 

start-situation’ without any shear-stress. The geometrical compatibility must be considered as 

follows:  𝑙𝑖 = √(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + (𝑧𝑖 − 𝑧𝑐)2 and 𝛾 = 𝑎𝑟𝑐𝑐𝑜𝑠(
𝑙𝑢∗𝑙𝑣

𝑙𝑢𝑙𝑣
), in which (𝑙𝑢 ∗

𝑙𝑣) means the inner (scalar-) product between u and v-direction. The shear-stress calculation is 

guaranteed also for a continuous membrane by the fact that the shear angle is between the non-

deformed u- and v-direction of the material (e.g. Stroebel and Holl).  

 



 
Proceedings of the Tensinet Symposium 2023 

 

Membrane architecture: the seventh established building material. Designing reliable and sustainable structures 

for the urban environment.  

 

As already mentioned, additional boundary conditions must be fulfilled for pneumatic 

structures: 

 

1. The internal pressure loads are deformation dependent. 

These loads are non-conservative. To get correct results software packages should 

consider these effects, especially also for wind loads. 

2. Gas laws must be considered in certain load cases. For static calculations we recommend 

4 calculation modes: 

a) Given internal pressure p (snow) 

b) Given volume V (water)  

c) Given product 𝑝∙𝑉 (Boyle-Mariotte, for example wind, p as absolute pressure)  

d) Given product 
𝑝∙𝑉

𝑇
 (General gas equation, consideration of temperature, p as absolute 

pressure) 

Mode c (consideration of gas-laws) enables the realistic behaviour of the internal pressure. This 

mode is important in case of e.g. fast wind gusts. Here the pump systems cannot update the 

inner pressure in the short time. We can see it as a closed system and by considering the 

temperature as constant we get the gas law of Boyle and Mariotte 𝑝∙𝑉=𝑐𝑜𝑛𝑠𝑡 in this case. Only 

if the gas law is fulfilled the membrane stresses get the correct size.  

𝜕Π

𝜕𝑥
=

1

2

𝜕(𝑣𝑡𝑅𝑣)

𝜕𝑥
− 𝑝𝑥 −

𝜕𝑉

𝜕𝑥
𝑝𝑖 = 0

𝜕Π

𝜕𝑦
=

1

2

𝜕(𝑣𝑡𝑅𝑣)

𝜕𝑦
− 𝑝𝑦 −

𝜕𝑉

𝜕𝑦
𝑝𝑖 = 0

𝜕Π

𝜕𝑧
=

1

2

𝜕(𝑣𝑡𝑅𝑣)

𝜕𝑧
− 𝑝𝑧 −

𝜕𝑉

𝜕𝑧
𝑝𝑖 = 0

𝜕Π

𝜕𝑝𝑖

= 𝑉 − 𝑉0 = 0

 (9) 

Equation (9) refers to mode c, here the constant value (pabs∙V)0 is the given product and row 4 

of (9) must be fulfilled in iterations where the unknown internal pressure pi is adapted. 

 

4. Geodesic Lines and Slip Cables 

Geodesic lines are solutions of a second order ordinary differential equation. In this paper, 

however, we will use some other definitions of the geodesic line, which show clearly that a 

geodesic line corresponds to a weightless prestressed cable stretched frictionlessly over a 

surface. A geodesic is a line whose geodesic curvature vector vanishes. This is only the case if 

the plane - created by the tangential and normal vector of the curve - is also the normal plane 

of the surface, i.e. the normal vectors of the curve and the surface normal vectors coincide at 

every point of the geodesic line. A prestressed cable on a surface can only be in equilibrium if 

it is normal, i.e. perpendicular, to the surface. Therefore, the equilibrium position of a 

prestressed (weightless) cable on a surface is a geodesic line and we define it as slip-cable.   
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Figure 2: Geodesic/slip line over surface 

We introduce now the slip-cables in the form-finding stage. Here we define a specific force 𝐹 

within the blue cable. Furthermore we assume the number of the blue cable pieces from this 

single slip cable to be 𝑛, the stressed length in a cable to be 𝑙𝑖 and the forcedensity to be 𝑞𝑖. So 

we have to add the following lines to equations (7). 

𝑞𝑖 −
𝐹

𝑙𝑖

= 0,                𝑖 = 1, 𝑛 (10) 

In case of static calculation we assume to have the stiffness of the slip cable (EA) and the sum 

of all stressed lengths 𝐿 and unstressed lengths 𝐿0.  

𝐿 = ∑ 𝑙𝑖

𝑛

𝑖=1

 

𝐿0 = ∑ 𝑙0𝑖

𝑛

𝑖=1

 

(11) 

Now the slip cable force densities 𝑞𝑖 can be calculated as: 

𝑞𝑖 = 𝐸𝐴
𝐿 − 𝐿0

𝐿0 ∙ 𝑙𝑖

 (12) 

As  𝐹 =  𝐸𝐴
𝐿−𝐿0

𝐿0
    we end up with the same force in all cable pieces.  

The green cable (all points on it are fixed) in Figure 3 has the black vectors as reaction forces. 

The yellow lines show the normal vectors of the surface. The black vectors and the yellow lines 

are parallel. This means that the green cable is a geodesic line. You can also see in the top view 

the S-line, which is always obtained as a geodesic line in the case of a cylindrical surface. 
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Figure 3: Slip line over cylindrical surface (side view left, plan view right) 

This means for the calculation of pretensioned (weightless) cables on a pneumatic membrane 

that these cables are provided with a pretension and they slide friction-free on the surface until 

they reach an equilibrium position. The condition is therefore simply constant force and the 

surface forms the support. 

5. Examples 

Our software gives several possibilities to put cables or a cable onto a pneumatic surface. In the 

following example we generated an equidistant mesh on the surface.  
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Figure 4: Big gas holder with equidistant cable mesh 

The following picture shows that the cables constrict the membrane already in the load case of 

internal operating pressure. 

 

Figure 5: Constriction of the membrane by cables 

When calculating pneumatic cable net reinforced membranes, the wind load cases are 

important and relevant for dimensioning.   

 

 

Figure 6: Deflected form under side wind 

Snow loads should also be considered. 
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Figure 7: Deflected form under snow load 

6. Conclusion 

The calculation methods for form-finding and statics of pneumatic constructions are extended 

with the help of additional conditions for the combined calculation of cable or cable net 

reinforced pneumatic membrane constructions. These extended methods are built into the 

calculation programs. They lead to realistic results, as can be seen from many examples. Even 

the largest projects can be determined in acceptable calculation times. 
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