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Abstract 

Formfinding, statical analysis and cutting pattern generation are considered with 
respect to a holistic statical calculation; it means, that a complete model is analysed 
under external loadings by taking into consideration e.g. the gas-laws for several 
chambers and simultaneously any boundary conditions (as bending stiff beam-
elements). 

Extended formfinding therories are presented firstly; the extension of the well-
known force density method by additional conditions (volume or inner pressure) to a 
so-called volume formfinding is described. Examples for single- and multi-
chambered (volume-) formfinding projects are shown. 

Statical Analysis of the structures is a problem in case of a holistic formulation. The 
isotropic material behavior of ETFE-foils is described by two values (E-modulus 
and Poisson's ratio); the constitutive equations rule the relationship between stress 
and strain and here we need 4 stiffness values, which are calculated from the already 
mentioned material values for ETFE. To calculate pneumatic systems with known 
internal pressure values is not possible in all load-case situations. E.g. under fast 
wind gusts the gas law has to be used; it means the product from volume and 
internal pressure remains constant in the chambers during loading. In many cases the 
chambered cushions are fixed to a bending stiff (steel) boundary. The deflections of 
these steel-elements under loads cannot be neglected and therefore they have to be 
part of the structural (holistic) system. 

Patterning of ETFE-cushions has to be made with highest accuracy: the reason is 
because of the material itself and also because of the fixed boundaries. We support 
the engineers by quality numbers of the patterning. In case of many cushions for big 
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project mass production has to be applied: in order to manage it automatic patterning 
tools are presented briefly.                                                         

Keywords: [ETFE, pneumatic cushions, formfinding, statical Analysis, patterning] 

1 Formfinding of Pneumatics 

The theory of the Formfinding of pneumatic cushions has its basics in the well-
known Force-Density Method ([1], [2] and [3]). The Force-Density Method creates 
a linear system of equations for the form-finding procedure by defining the ratio 
between Force S and stressed length l to be known. Hereby the nonlinear equations 
of the equilibrium change to a linear system. 

 

Figure 1: Four cables in point C 

In order to clarify these facts Fig. 1 shows a point C which is connected by cables to 
4 points (1,2,3,4). The nonlinear equations of the equilibrium in the point C are as 

follows, where the external load-vector can be expressed ).( zyx
t ppp=p  
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These equations become linear by assuming known force-densities, e.g.  
1

1
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and analogue for q2, q3 and q4. The force-density equations are as follows: 

zcccc

ycccc

xcccc

pqzzqzzqzzqzz

pqyyqyyqyyqyy

pqxxqxxqxxqxx

=−+−+−+−
=−+−+−+−
=−+−+−+−

44332211

44332211

44332211

)()()()(

)()()()(

)()()()(

 



 3

The coordinates of the point C are the solution of these linear equations. In the 
following step we want to write the above system by considering m neighbors in the 
point C: 
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The energy which belongs to the system (1) can be written as (see also [4] and [5])  
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The chamber of a pneumatic cushion has a volume V, which is made by an internal 
pressure pi. The product from internal pressure and volume is a part of the total 
energy Π : a given volume V0 leads directly to a specific internal pressure pi : hence 
the total energy for the formfinding of a pneumatic cushion is 
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The derivation of the total energy to the unknown coordinates and to the unknown 
internal pressure ends up with 
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In the system (2) the internal pressure pi can be seen as a so-called Lagrange 

multiplier. The fourth column in (2) shows, that our boundary condition 0VV =  is 

obtained by the derivation of the energy to this Lagrange multiplier. The vector  
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 describes the normal direction in the point (x, y, z) and the size 

is the according area. By a set of given force-densities for all elements and also a 
given volume V0 we end up with a pre-stressed and of course balanced pneumatic 
system with a volume V0  and an internal pressure pi . 

Each additional chamber leads to an additional Volume and Lagrange multiplier, 
which allows to calculate multi-chambered cushions (see Fig.2). 

 

 

Figure 2: 2 chambers with 3 layers. 

 

The force-densities q and the internal pressure pi are not independent from each 
other. We are going to show it with the following single-chamber-example.   

Example 1:  

The Volume Formfinding example has the geometry 20 m by 10 m. The required 
volume V0 of a single chambered-cushion is 400 m3. A stress distribution of 1 kN/m 
in both directions leads to an internal pressure of 0.16 kN/m2. The sag is 1.95 m.  
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Although the engineer likes this result with respect to its geometry, it may happen 
that he wants to get a higher internal pressure as operating pressure (e.g. 0.35kN/m2). 
In this case he simply has to use a higher pre-stress 0.35 /0.16*1 kN/m = 2.1875 
kN/m in order to get the desired pressure of 0.35 kN/m2. The geometry remains 
unchanged. 

The rule is: the stresses are proportional to the internal pressure. So we notice 

ip≈σ  in case of non-changing geometry in the Volume Formfinding procedure. 

We want to point out again, that in the Volume Formfinding no material properties 
are used, only force-densities in all elements and a desired volume are inputted and 
then we receive the form by solving system (2). Usually the additional external loads 
(px, py, pz) do not exist. 

 

  

 

 

Figure 3: Pneumatic chamber 
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2 Statical Analysis of Pneumatics 

Membrane Elements 

We extend the form-finding theory by introducing the constitutive equations for the 
membrane elements to the system (1). Now the force-densities q from the form-
finding are unknowns and they belong to the material equations. 

















∆















=
















γ
ε
ε

τ
σ
σ

v

u

u

u

msym

m

mm

33

22

1211

.

0

0

 

We have to consider, that the membrane axial-stress in u- or v- direction can be 

expressed as 
u

u
u b

S=σ  and 
v

v
v b

S=σ . bu and bv are the widths of the u- and v-

lines. The force-densities q can be introduced now as: uuu lqS =  and vvv lqS = . 
The strains in u- and v-direction can be written as follows: 
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ll −=ε  . The angle difference 0γγγ −=∆  is needed 

for the shear-stress calculation. γ  is the angle between u and v-direction;  0γ refers 

to the ‘non-deformed start-situation’ without any shear-stress.  

The geometrical compatibility has to be considered as follows:  
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which )*( vu ll means the inner (scalar-) product between u and v-direction.  

The shear-stress calculation is guaranteed also for a continuous membrane by the 
fact that the shear angle is between the non-deformed u- and v-direction of the 
material [4].  

Now we show an example in Fig. 3 with isotropic material (e.g. ETFE 200 mµ ) 

which is given by only an E-modulus and Poisson’s ratioν . With 1180 −= kNmE  

and 33.0=ν  we receive the relations  
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in the units 1−kNm . After having introduced this material properties we calculate 3 
load cases, showing the different possibilities in ‘Volume Statical Analysis’. 



 7

 

LC 1: Permanent Snow Load  (steered by a fixed inner pressure (pi=pfixed)) 

The snow loads are only on the top-layer of the cushion. The operating pressure is 
increased in winter from 0.35 kN/m2 to 1.00 kN/m2 under a large permanent snow 
load of 0.9 kN/m2. As we can see immediately, in the top layer the membrane 
stresses are reduced and in the bottom layer we have stresses up to almost 7 kN/m. 

 
Figure 4: Cushion under snow loading 

LC 2: Fast wind pressure. (steered by gas-law (pV=constant)) 

The wind pressure loads are only on the top-layer of the cushion. We assume the 
wind gust so fast, that the gas-law can be used. The operating pressure before wind 
loading is 0.35 kN/m2. It is increased by the gas-law to 0.45kN/m2 and the volume is 
decreased from 400m3 to 399.6m3. The behavior in its quality is very similar to LC 
1, but here the gas law is valid. The product form p1 and V1 before loading is 
identical to the product p2 and V2 under wind pressure loads. The gas law in our 

example is 202101 )()( VppVpp +=+ . We have to consider that in the gas law 

the absolute pressure and not the difference pressure is applied. In the gas law we 
always have to add the atmospheric pressure p0 (100.0 kN/m2) to the difference 
pressure (p1 or p2). With our number we get 100.35*400.0=100.45*399.6=40140. 

 

 

Figure 5: Cushion under wind pressure 
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LC 3: Fast wind overall suction. (steered by gas-law (pV=constant)) 

The wind loads are on the top and on the bottom layer of the cushion. The operating 
pressure is decreased from 0.35 kN/m2 to -0.42 kN/m2 and the volume is increased to 
to 403.1m3. In this example the gas law is very helpful; the membrane stresses 
remain moderate, because of the strongly decreased inner pressure (even to 
negative). 

 

Figure 6: Cushion under wind suction 

 

In our example the outer boundary was assumed to be fixed. But in reality we have a 
bending stiff frame with a specific stiffness or flexibility. In order to take these facts 
into consideration we have to extend our model by bending elements. 

Beam Elements 

The internal energy of beam element can be expressed in the already known form 

.
2

1
Rvv t  Therefore we have to introduce angles being used for the formulation of 

the inner   energy. A bending element connects a start-point and an end-point. The 
angle between the direct line between start- and end-oint and the direction of the real 

axis in the start point is called startvδ . On the end point we have the angle endvδ . 

Those 2 angles are measured in the u,w-projection of the local coordinate-system, 

which is updated in each iteration. endstartsum vvv δδδ +=  and 

endstartdif vvv δδδ −= . Analogue for the angles wδ  in the u,v-plane. For the 

torsion we introduce an angle uδ . This angle is found as follows: the 3D rotation of 
the starting-point with respect to the updated local coordinate system is executed 
with respect to v- and w-axis in the starting and ending point. The angle difference in 
the v, w-plane between starting and ending is called uδ . The axial force is simple. 
The difference between stressed length l and unstressed length l0 is measured. Now 

the inner energy of one bending element can be written as  ∑
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We change our system from the example by creating a free beam as boundary. In the 
LC snow we can see the bending moments (around v- and w-axis) in the beam-ring. 

 
 

Figure 6: Cushion under wind suction 

Example 2:  

The Volume Formfinding example has a circular geometry with a diameter of 6 m.  
The required volume V0 of the upper chamber is 12 m3 and of the lower chamber 9 
m3 . With a desired stress distribution of 1 kN/m in both directions in all layers we 
end up with the result in Fig. 7.  

 

Figure 7: 2-chamber-cushion (exploded) 
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The upper chamber is defined by the red and violet triangles; the lower chamber by 
the violet and green triangles. We receive in the Volume Formfinding result an 
internal pressure of 0.33 kN/m2 in the upper chamber, and 0.30 kN/m2 in the lower 
chamber. In this example we want to put the focus onto the gas law within our 
theory: therefore we define in the first loadcase (LC1) a fast windgust (overall 
suction) and we maintain the operating pressures (0.33 and 0.30 kN/m2 ). We assume 
in a second loadcase (LC 2) the gas-law to be valid; this means: the product from the 
absolute internal pressure with its volume remains constant during wind-loading. 

 

LC 1: Fast wind overall suction: steered by internal pressure 

 

 

 

Figure 8: Large deflections and large membrane stresses 

 

Here the membrane stresses are very high: the reason is simple; the constant internal 
pressure and the overall wind-suction have the same directions; the membrane is 
loaded by superimposed loads; therefore the stresses are up to almost 5 kN/m.  
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LC 2: Fast wind overall suction: steered by gas-law  

Now the internal pressures are decreased; only -0.93 kN/m2 in the upper chamber and 
-0.95 kN/m2 in the lower chamber remain. The volumes increase to 12.135 m3  in the 
upper and to 9.100 m3 in the lower chamber.  These facts are essential for the 
stresses: they are very moderate (approx. 1 kN/m). 

 

 

Figure 9: Small deflections and small membrane stresses 

The combination of membrane-elements, cables, struts, beam-elements together 
with constraints as gas-law, constant inner pressure or volume in one or any number 
of chambers can be managed with the shown theory. 

 

 

 

 

 

 

 

Figure 10: Deflections and internal moments 
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3 Cutting Patterns of  Pneumatics 

The calculation of cutting patterns should be done for all cushions but especially 
also for ETFE foils with highest accuracy. Cushions are mainly fixed by very non-
flexible or very stiff boundaries. Therefore we have no chance to adjust an 
inaccurate patterning as we can do it in case of free boundaries (e.g. cables in a 
pocket) for mechanically stressed membranes. In order to avoid waste of material we 
have to adjust the maximum patterning widths to the role widths (or in whole-
number parts of it). The maximum widths of cushion-patterns lie in ridge line. 
Therefore an automatic widths-optimisation is possible using this line as guide-line.  

 

Figure 11: Cushion with geodesic lines 

We simply generate points on this line having the distance of the desired cloths-
widths. Now geodesic lines - which are perpendicular to the ridge-line - are 
produced automatically. Then the flattening procedure is executed: seam-allowances 
and welding marks are generated to simplify the whole production-line. Also quality 
numbers are calculated, they can be used to check if the widths are small enough to 
get well-stressed surfaces without any wrinkles. The non-compensated and adjusted 
boundary lines are absolutely as they have to be: 10.000 and 20.000 m. The area 
differences between 3D cushion-area and 2D patterns-area are smaller than 0.02%. 
So a wrinkle-free cushion is guaranteed.  

 

Figure 12: Flattened patterns 

Often we have to consider in the patterning procedure for ETFE cushions, that the 
seams in the fixed boundaries from upper and lower layer are not at the same 
position. We support our clients by showing the seams e.g. from the upper layer 
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during the patterning procedure of the lower layer. So the gaps in between different 
layers can simply be managed.  

 

Figure 13: Gap optimisation 
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