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1 INTRODUCTION 

Today, computer models play an important role in the calculation of textile membrane and 

foil structures. To be able to derive high-quality results from a model, the software used must 

enable the most accurate and complete description of a structure. In the case of combined 

pneumatically and mechanically tensioned structures, the generation of the models and the 

statical calculation is often a challenge. 

 

Topologically correct discrete mechanical models are a basic prerequisite for static calculations. 

If, based on the models, additional cutting patterns or the water flow are to be derived, the water 

tightness must also be guaranteed. Due to the non-linearity of the static calculation, the models 

must also be in or very close to the state of equilibrium. Only then the geometrically non-linear 

static problem can be solved. 

 

The state of equilibrium for mechanically stressed membrane and foil structures can only be 

found with a form-finding calculation. Such structures cannot be designed as conventional 

structures: conventional design means, in this context, the architect fixes the real geometry on 

a drawing board. This is not possible with respect to pre-stressed lightweight structures because 

internal forces or stresses and the surface geometry are not independent of each other [1]. 

 

With pure pneumatic structures we are basically dealing with 2 groups. The first group includes 

the pneumatic structures over an arbitrary boundary. This group needs a form-finding process 

considering an internal pressure. The second group includes pneumatically feasible structures 

like cylinders and spherical segments. These shapes can be created by a purely geometric 

function and in certain circumstances (see 3.2), it is possible to generate the models from group 

2 without a form finding process. The direct use (e.g. for cutting pattern generation) of the 

shapes as a result of geometric functions is often applied when the manufacturing process is to 

be kept simple and the production costs low.  
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Figure 1: Pneumatic structure over an arbitrary boundary (left), pneumatically feasible structures (right) 

Because the form-finding process can be omitted for the second group, it has proven useful to 

use nurbs geometry to create these structures. Another big advantage of nurbs surfaces is that 

it is relatively easy to intersect them to create the most complicated overall models. 

 

 
Figure 2: Discrete pneumatically feasible tube structure (1 chamber) made from nurbs 

When dealing with combined pneumatically (from group 2) and mechanically stressed 

structures, the mechanically stressed parts can no longer be derived directly (without form 

finding) from their nurbs geometry. In this case, form finding is done separately for the 

mechanically stressed surfaces. The result is then combined with the pneumatically stressed 

structures to form an overall structure. Our system offers a plugin for the Rhino CAD system 

for this purpose. The plugin enables the transfer of a nurbs geometry created in Rhino CAD 

system into the Easy system, i.e. the discrete model is created from intersected Rhino Brep 

objects.  

 

   

Figure 3: Combined pneumatically and mechanically stressed structure with nurbs (left), discrete overall system 

(middle), visualisation of the 3 chambers in the discrete model (right)  
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Statics starts with the definition of the material properties. In general, we define for textile 

membranes: warp- and weft stiffness, and, if available, crimp- and shear stiffness. We must fix 

the internal (operating) pressure values for the chamber(s) and now the unstressed geometry of 

the finite membrane elements for the pneumatic and mechanically stressed elements can be 

calculated. Load case calculations can be performed now by 4 different modes: Constant inner 

pressure (p=constant), constant volume (V=constant), constant product of inner pressure and 

volume (p∙V=constant, gas law of Boyle-Mariotte) or even the general gas equation 

(p∙V/T=constant). 

 

 
  

Figure 4: Load case calculation (stresses/reaction forces and deformations) 

2 MODEL GENERATION 

In the case of mechanically stressed structures, a form-finding calculation is required because 

internal forces or stresses and the surface geometry are not independent of each other. 

 

As already mentioned in the previous section, in the case of purely pneumatic structures we 

distinguish between 2 different groups of design principles in model generation. The first group 

includes structures whose form can only be found via form-finding involving the internal 

pressure. The second group includes structures that can be formed pneumatically and can be 

generated via purely geometric functions. Under certain circumstances (see 3.2) a form-finding 

calculation may be omitted for models in this group. In both cases, a shape should be achieved 

with harmonic stress distribution. 

2.1 Formfinding 

The theory of the form finding of mechanically and pneumatically membrane or foil structures 

has its basics in the well-known Force-Density Method ([1], [4], [5]). By specifying force 

densities (ratio between force S and stressed length l), the non-linear equilibrium equations 

become linear and can be solved without specifying initial values. 

 

 
Figure 5: Four cables in point C 
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In the case of a point C connected by 4 cables to fixed points 1,2,3 and 4, the equilibrium 

conditions are as follows, where the external load vector can be expressed 𝒑𝑡 = (𝑝𝑥 𝑝𝑦 𝑝𝑧). 
 

(𝑥𝑐 − 𝑥1)
𝑆1

𝑙1

+ (𝑥𝑐 − 𝑥2)
𝑆2

𝑙2

+ (𝑥𝑐 − 𝑥3)
𝑆3

𝑙3

+ (𝑥𝑐 − 𝑥4)
𝑆4

𝑙4

= 𝑝𝑥

(𝑦𝑐 − 𝑦1)
𝑆1

𝑙1

+ (𝑦𝑐 − 𝑦2)
𝑆2

𝑙2

+ (𝑦𝑐 − 𝑦3)
𝑆3

𝑙3

+ (𝑦𝑐 − 𝑦4)
𝑆4

𝑙4

= 𝑝𝑦

(𝑧𝑐 − 𝑧1)
𝑆1

𝑙1

+ (𝑧𝑐 − 𝑧2)
𝑆2

𝑙2

+ (𝑧𝑐 − 𝑧3)
𝑆3

𝑙3

+ (𝑧𝑐 − 𝑧4)
𝑆4

𝑙4

= 𝑝𝑧

 (1) 

 

If one specifies known force densities in (1), e.g. 𝑞1 =
𝑆1

𝑙1
, and analogue for q2, q3 and q4, then 

the equations become linear and result in: 

 
(𝑥𝑐 − 𝑥1)𝑞1 + (𝑥𝑐 − 𝑥2)𝑞2 + (𝑥𝑐 − 𝑥3)𝑞3 + (𝑥𝑐 − 𝑥4)𝑞4 = 𝑝𝑥

(𝑦𝑐 − 𝑦1)𝑞1 + (𝑦𝑐 − 𝑦2)𝑞2 + (𝑦𝑐 − 𝑦3)𝑞3 + (𝑦𝑐 − 𝑦4)𝑞4 = 𝑝𝑦

(𝑧𝑐 − 𝑧1)𝑞1 + (𝑧𝑐 − 𝑧2)𝑞2 + (𝑧𝑐 − 𝑧3)𝑞3 + (𝑧𝑐 − 𝑧4)𝑞4 = 𝑝𝑧

 (2) 

 

The coordinates of the point C (𝑥𝑐 , 𝑦𝑐, 𝑧𝑐) are the solution of these linear equations. In the 

following step we want to write the system above by considering m neighbours in the point C: 

 

∑(𝑥𝑖 − 𝑥𝑐)𝑞𝑖 − 𝑝𝑥

𝑚

𝑖=1

= 0

∑(𝑦𝑖 − 𝑦𝑐)𝑞𝑖 − 𝑝𝑦

𝑚

𝑖=1

= 0

∑(𝑧𝑖 − 𝑧𝑐)𝑞𝑖 − 𝑝𝑧

𝑚

𝑖=1

= 0

 (3) 

 

The energy which belongs to the system (1) can be written as: 

 

∏ =
1

2
𝒗𝑡𝑹𝒗 − 𝑝𝑥(𝑥 − 𝑥0) − 𝑝𝑦(𝑦 − 𝑦0) − 𝑝𝑧(𝑧 − 𝑧0) ⇒ 𝑠𝑡𝑎𝑡. (4) 

 

The internal energy is the expression 
1

2
𝒗𝑡𝑹𝒗. The vector 𝒗𝑡 = (𝑣𝑥 𝑣𝑦 𝑣𝑧)   and the matrix 

𝑹 = 𝑑𝑖𝑎𝑔(𝑞𝑖 𝑞𝑖 𝑞𝑖) show this energy with respect to a single line element i  .We can write 

the inner energy as 
1

2
𝑞𝑖(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2),  precisely:  

 
𝑣𝑥 = 𝑥𝑖 − 𝑥𝑐

𝑣𝑦 = 𝑦𝑖 − 𝑦𝑐

𝑣𝑧 = 𝑧𝑖 − 𝑧𝑐

            𝑹 = [

𝑞𝑖 0 0

𝑞𝑖 0

𝑠𝑦𝑚. 𝑞𝑖

] (5) 

 

The chamber of a pneumatic structure has a volume V, which is made by an internal pressure 

pi. The product from internal pressure and volume is a part of the total energy  : a given 
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volume V0 leads directly to a specific internal pressure pi: hence the total energy for the form-

finding of a pneumatic chamber is 
 

∏ =
1

2
𝒗𝑡𝑹𝒗 − 𝑝𝑥(𝑥 − 𝑥0) − 𝑝𝑦(𝑦 − 𝑦0) − 𝑝𝑧(𝑧 − 𝑧0) − 𝑝𝑖(𝑉 − 𝑉0) ⇒ 𝑠𝑡𝑎𝑡. (6) 

 

The derivation of the total energy to the unknown coordinates and to the unknown internal 

pressure ends up with 

 

𝜕∏

𝜕𝑥
= ∑(𝑥𝑖 − 𝑥𝑐)𝑞𝑖 − 𝑝𝑥 − 𝑝𝑖

𝜕𝑉

𝜕𝑥

𝑚

𝑖=1

= 0

𝜕∏

𝜕𝑦
= ∑(𝑦𝑖 − 𝑦𝑐)𝑞𝑖 − 𝑝𝑦 − 𝑝𝑖

𝜕𝑉

𝜕𝑦

𝑚

𝑖=1

= 0

𝜕∏

𝜕𝑧
= ∑(𝑧𝑖 − 𝑧𝑐)𝑞 𝑖 − 𝑝𝑧 − 𝑝𝑖

𝜕𝑉

𝜕𝑧

𝑚

𝑖=1

= 0

𝜕∏

𝜕𝑝𝑖

= 𝑉 − 𝑉0 = 0

 (7) 

 

In the system (7) the internal pressure pi can be seen as a so-called Lagrange multiplier. The 

fourth column in (7) shows, that our boundary condition 𝑉 = 𝑉0 is obtained by the derivation 

of the energy to this Lagrange multiplier. The vector  (
𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑦

𝜕𝑉

𝜕𝑧
) describes the normal 

direction in the point (x, y, z) and the size is the according area. By a set of given force-densities 

for all elements and a given volume V0 we end up with a pre-stressed and of course balanced 

pneumatic system with a volume V0 and an internal pressure pi. 

2.2 Forms from geometrical functions 

When using purely geometric functions to generate pneumatic models, it must be ensured that 

the resulting shapes can be formed pneumatically. If the models are not pneumatically formable, 

the non-linear static calculation may not lead to any result or the result geometry of the static 

calculation without external loads may be very far from the originally desired geometry. Only 

a few geometrical functions are useful as spheres, cylinders, torus shaped forms and segments 

of these forms. 

   

To keep the manufacturing process simple and production costs low, it is still often seen today 

that the form-finding process is omitted. Pneumatically feasible forms, such as cylinders and 

spherical segments are combined to complete structures e.g. for air halls. In the case of 

cylinders, these are also developable surfaces, which have the advantage that the cutting 

patterns can be used in straight lines and without distortions in a simple flattening process. 

 

The generation of discrete models in the case of simple, non-intersected structures can be done 

directly via geometric functions. A discrete spherical model with its centre in the coordinate 

origin can, for example, be generated with the help of spherical coordinates through 
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[
𝑥
𝑦
𝑧

] = [

𝜌 cos 𝜃 sin 𝜙
𝜌 sin 𝜃 sin 𝜙

𝜌 cos 𝜙
] 

 
(8) 

 

𝜃 is an azimuthal coordinate running from 0 to 2𝜋,  𝜙 is a polar coordinate running from 0 to 𝜋, 

and 𝜌 is the radius. 

 

The following relationships apply to a cylinder: 

 

[
𝑥
𝑦
𝑧

] = [
𝑎 cos 𝑢
𝑎 sin 𝑢

𝜈
] (9) 

 

a is the radius, u is an azimuthal coordinate running from 0 to 2𝜋, 𝜈 runs from 0 to the desired 

height. Similarly, simple non-intersected shapes can be generated and combined to form an 

overall structure. 

 

   

Figure 6: Discrete sphere and tube model (left), 2 quarter spheres and 1 half cylindeer combined to a discrete 

model (right) 

If the structures are combinations based on intersections of the individual basic elements, it is 

no longer possible to generate the model as simply as shown above. The intersection of discrete 

structural elements of arbitrary shape is very complex and often leads to unclean topologically 

incorrect mechanical models. In this case, it has proven useful to build the models based on 

intersected nurbs surfaces and to derive the discrete mechanical model from the intersected 

nurbs surfaces. 

 

In our first example, we use the Rhino plugin Brep2Easy to generate the discrete model. The 

plugin works based on Boundary Representation objects (Brep) objects. Brep objects in turn 

consist of one or more Brep-face objects. A Brep-face represents the underlying (nurbs) surface 

including the trimming curves. The plugin generates the discrete mesh within the CAD 

program, displays it and creates the model data for the Easy system. The user has the possibility 

to control the material direction and the mesh size for each Brep-face object individually in the 

CAD system. This creates meshes that represent the material directions. In addition, the 

discretisation of the edge geometry can be defined independently of the mesh size. By using 

the Brep objects, it is possible to create topologically clean and watertight discrete models at 

the intersection lines.  
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For the static calculation of pneumatic structures, a description of the pneumatic chambers is 

required in addition to the surface elements describing the area for calculating the external loads 

(triangular elements). If the Brep object in the CAD system is a closed surface, Brep2Easy 

automatically provides a discrete chamber description for the Brep object. 

 

   

Figure 7: Combination of pneumatically feasible elements by intersecting of nurbs surfaces (left), Brep-object 

and overlayed discrete model (middle), discrete model (right) 

2.3 Combined forms 

Our next example shows the procedure for a structure consisting of 2 pneumatically formable 

tubes and additional 4 mechanically tensioned membrane walls. The CAD model was created 

through geometric construction and cutting in the CAD System. 

 

 
Figure 8: 2 intersecting air pipes and 4 mechanically stressed walls 

The two intersecting tubes form one pneumatic chamber and are connected to the 4 membrane 

walls. The tubes are pneumatically feasible, so there is no need for form-finding here. The 4 

walls are mechanically stressed and generated in the CAD system purely geometrically from 

nurbs surfaces. Form-finding is required for these surfaces. 

 

Because the nurbs membrane walls are useless for correct modelling, only the tubes were 

generated as discrete surfaces when creating the discrete model. For the 4 wall surfaces, only 

the boundaries were generated as boundary polygons.   
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CAD model  Discrete model 

 

 

 
Brep2Easy 

 
Figure 9: First step in modelling 

Based on the boundary polygons, the wall surfaces can then be generated as equilibrium figures 

with a standard form-finding calculation and combined with the tubes. 

 

  

Figure 10: Force density form-finding based on boundaries from CAD 

The following graphic shows the entire process of model generation. The pneumatically 

formable tube system with the chamber definition is combined with the form-finding result of 

the membrane walls. Because the model was derived from a Brep object, a topologically clean 

mechanical model is created. 

 

 
Figure 11: Sequence of the modelling with combined mechanical and pneumatic stressed structures 

3 STATICS 

A static calculation for membranes and foil structures is geometrically nonlinear. The 

calculation requires the unstressed geometry and the material properties for all elements of the 

model. For the load case calculation, the external loads and, in the case of pneumatic structures, 

internal pressures or volume data are also required. Additional boundary conditions in case of 

pneumatic structures are that the loads are deformation-dependent and that the gas law must be 

considered in certain load cases. 

3.1 Statics with form-finding models 

After the form has been found, the transition from the "force density controlled" calculation 

to the "elastic force controlled" calculation takes place by introducing the material properties 
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and calculating the undeformed geometry based on the given pre-stress values. After this 

calculation step, unstressed lengths are available for all elements. The result of this calculation 

must be identical with the Formfinding result as we 'shortened' the membrane elements in this 

way. Usually the first load-case in statics to be calculated should be 'internal operation pressure'. 

3.2 Statics with geometrically defined models 

If a shape has been found purely geometrically, no prestress values are available or the given 

prestress values usually do not lead to an equilibrium figure. In this case, we suggest the 

following procedure: 

 

First, the material properties are set for all elements. Because it is not possible to calculate the 

undeformed geometry due to missing prestress values, the stressed lengths are now set equal to 

the unstressed lengths. After an initial static calculation with the internal operating pressure, 

this leads to a geometry change that can be accepted if it is small. If the geometrically defined 

form was pneumatic feasible the differences are only caused by the elastic deformations in the 

load case ‘operating pressure’. The following pictures show a shape that cannot be formed 

pneumatically. 

  

 

 
Figure 12: Geometrically defined model (left), discrete model (middle), comparison of the geometrically defined 

shape (black) with the shape statically calculated under internal pressure (red) (right).  

  
Figure 13: Detailed views: Geometrically defined shape (left), statically calculated shape under internal pressure 

(right) 
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3.3 Statics with combined models 

When dealing with models where one part was created from a form-finding calculation and 

another part purely geometrically, one can combine the procedures described in 3.1and 3.2. The 

material properties are set, then the unstressed element geometry is calculated or set as 

described above, finally a first load case is calculated with a given internal operating pressure. 

 

   

Formfinding result. Unstressed 

length based on prestress 

Geometrical defined forms. 

Stressed length = unstressed 

length 

Load case ‘operating pressure’ 

Figure 14: Combination and calculation of the ‘operating pressure’ load case 

3.4 Theoretical background 

By introducing the constitutive equations for the membrane elements into the system (1), we 

extend the form-finding theory. Now the force-densities q from the form-finding are unknowns 

and they belong to the material equations. 

 

[
𝜎𝑢

𝜎𝑢

𝜏
] = [

𝑚11 𝑚12 0

𝑚22 0

𝑠𝑦𝑚. 𝑚33

] [

𝜀𝑢

𝜀𝑣

𝛥𝛾
] (10) 

 

We must consider that the membrane axial-stress in u- or v- direction can be expressed as 𝜎𝑢 =
𝑆𝑢

𝑏𝑢
 and 𝜎𝑣 =

𝑆𝑣

𝑏𝑣
. bu and bv are the widths of the u- and v-lines. The force-densities q can be 

introduced now as: 𝑆𝑢 = 𝑞𝑢𝑙𝑢 and 𝑆𝑣 = 𝑞𝑣𝑙𝑣. The strains in u- and v-direction can be written 

as follows: 𝜀𝑢 =
𝑙𝑢−𝑙𝑢0

𝑙𝑢0
 and 𝜀𝑣 =

𝑙𝑣−𝑙𝑣0

𝑙𝑣0
 . The angle difference 𝛥𝛾 = 𝛾 − 𝛾0 is needed for the 

shear-stress calculation. 𝛾 is the angle between u and v-direction;  𝛾0refers to the ‘non-deformed 

start-situation’ without any shear-stress. The geometrical compatibility must be considered as 

follows:  𝑙𝑖 = √(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + (𝑧𝑖 − 𝑧𝑐)2 and 𝛾 = 𝑎𝑟𝑐𝑐𝑜𝑠(
𝑙𝑢∗𝑙𝑣

𝑙𝑢𝑙𝑣
), in which (𝑙𝑢 ∗

𝑙𝑣) means the inner (scalar-) product between u and v-direction. The shear-stress calculation is 

guaranteed also for a continuous membrane by the fact that the shear angle is between the non-

deformed u- and v-direction of the material [4].  

 

As already mentioned, additional boundary conditions must be fulfilled for pneumatic 

structures: 
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1. The internal pressure loads are deformation dependent. 

These loads are non-conservative. To get correct results software packages should 

consider these effects, especially also for wind loads. 

2. Gas laws must be considered in certain load cases. For static calculations we recommend 

4 calculation modes: 

a) Given internal pressure p (snow) 

b) Given volume V (water)  

c) Given product 𝑝∙𝑉 (Boyle-Mariotte, for example wind, p as absolute pressure)  

d) Given product 
𝑝∙𝑉

𝑇
 (General gas equation, consideration of temperature, p as absolute 

pressure) 

Mode c (consideration of gas-laws) enables the realistic behaviour of the internal pressure. This 

mode is important in case of e.g. fast wind gusts. Here the pump systems cannot update the 

inner pressure in the short time. We can see it as a closed system and by considering the 

temperature as constant we get the gas law of Boyle and Mariotte 𝑝∙𝑉=𝑐𝑜𝑛𝑠𝑡 in this case. Only 

if the gas law is fulfilled the membrane stresses get the correct size.  

𝜕Π

𝜕𝑥
=

1

2

𝜕(𝑣𝑡𝑅𝑣)

𝜕𝑥
− 𝑝𝑥 −

𝜕𝑉

𝜕𝑥
𝑝𝑖 = 0

𝜕Π

𝜕𝑦
=

1

2

𝜕(𝑣𝑡𝑅𝑣)

𝜕𝑦
− 𝑝𝑦 −

𝜕𝑉

𝜕𝑦
𝑝𝑖 = 0

𝜕Π

𝜕𝑧
=

1

2

𝜕(𝑣𝑡𝑅𝑣)

𝜕𝑧
− 𝑝𝑧 −

𝜕𝑉

𝜕𝑧
𝑝𝑖 = 0

𝜕Π

𝜕𝑝𝑖

= 𝑉 − 𝑉0 = 0

 (11) 

Equation (11) refers to mode c, here the constant value (pabs∙V)0 is the given product and row 4 

of (11) must be fulfilled in iterations where the unknown internal pressure pi is adapted. 

3.5 Load cases 

For the combined model we calculated different wind load cases. The wind loads were 

generated with the digital wind tunnel EasyDWT (wind speed 30 m/s). As an example, we 

briefly present the results of the ‘wind +x’ load case calculation. In the example shown, a 

constant internal pressure of 0.3 bar (30 kN/m2) was assumed. 

 

  
Figure 15: Wind pressures from the digital wind tunnel (left), stresses, reaction forces and deformation (right) 
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If the load case is calculated with constant internal pressure, it must be assumed that the internal 

pressure is kept constant at 0.3 bar during the wind load. 

 

For the load case ‘wind +x’, calculated with the gas law, the result was not an increase in volume 

with a simultaneous decrease in internal pressure, as initially expected, but a reduction in 

volume with a simultaneous increase in internal pressure (from 30 kN/m2 to 30.11 kN/m2). 

4 Summary 

The modelling for a static calculation is still a challenging and time-consuming task today, 

especially when it comes to intersected pneumatic structures. In our article we have shown that 

the fast generation and static calculation of combined pneumatically and mechanically 

tensioned models is possible with our system. A particular difficulty in model generation is the 

intersection of individual volume elements. To avoid the intersection problems in the case of 

discrete meshes, we use Nurbs surfaces and intersect them. The newly created partial surfaces 

are combined as objects and then discretised. This results in topologically correct mechanical 

models that are suitable for a static calculation. 
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