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Abstract 

Nowadays, radial cutting patterns are common for biogas tanks above a certain construction height. 

The radial cutting patterns are a production challenge, especially at the polar caps. In order to avoid 

production difficulties, it is desirable to build plants with parallel cutting patterns. In our paper the 

results of a radial cutting pattern are compared and discussed with the results of a parallel cutting 

pattern. 

Our model deals with the two membrane envelopes of a double membrane system. Together with the 

inner membrane (gas membrane), an outer membrane forms a chamber, the so-called air support 

space. Together with the silo walls and the surface of the substrate, the gas membrane forms a second 

chamber, the so-called gas space. 

Different scenarios, e.g. the situation under internal operating pressure and the situation under a gust 

of wind were simulated. In the case of ‘fast’ loads (wind), the gas law applies. In the case of rapidly 

occurring loads, it must be investigated whether the outer shell and the gas membrane touch each 

other. The contact problem can be considered in our calculation model. 

We have applied the internal pressure perpendicular to the surface for each deformed state. We also 

carried the wind loads with the deformations in the iterations. The material properties are defined by 

warp-, weft stiffness and the so-called transverse and shear stiffness in order to simulate a realistic 

behavior in the radial or parallel directions. 

Keywords: Pneumatic structures, Biogas plants, Lightweight structures, Formfinding, Statics, Patterning, Gas 

law, Contact problem, Hybrid structures, Membranes, Foils, Force density, Optimization  

1 Introduction 

The relationships to the calculation of spheres under internal pressure from isotropic material have 

been known for a long time. The stress s in the surface is the same in all points and depends in a 

simple way on the internal pressure p and radius R (s=p*R). A sphere is therefore a regular surface 

that can be formed pneumatically (such as a cylinder or torus). This simple fact is made considerably 

more difficult by the fact that textile fabrics do not have isotropic but orthotropic material behavior 

and are subject not only to internal pressure loads but also, for example, to snow and wind loads. 

Furthermore, in the simplest case, the structures to be investigated are not spheres, but parts of spheres 

(spherical calottes), or no regular surfaces anymore, if one does not have a circular, but a polygonal 

edge. The membrane design is simple in the case of the circular boundary. One simply takes a sphere 

section. In the case of the polygonal boundary, however, the geometry must be determined in a form-

finding process. The result must have a geometry that represents an equilibrium figure under internal 

pressure loads. These facts are relevant for the determination of the cutting patterns. As with any other 

surface, any cutting variants and thus different material directions are possible. Static calculations 
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must ensure that the maximum membrane stresses are not exceeded. In the case of the general 

spherical shape, which was determined by a form-finding process, the material directions must be 

considered in the form-finding process as the above-mentioned simple relationship s=p*R is not 

anymore valid in case of orthotropic material. It follows a short description of ‘usual’ biogas storage 

systems, so that the formation of computer models becomes understandable. 

2 Schematic sketch 

Biogas storage systems generally have 2 membrane covers. The outer shell and the so-called gas 

membrane. The air volume between the outer and inner shell is called the air support space. It is 

always under pressure. The volume under the gas membrane forms the so-called gas space. There are 

different pressure situations in the gas space. If the pressure in the gas space is 0, the gas membrane 

lies on the belts that run from a central point to the silo edges. If the gas pressure is maximum, the 

volume of the gas space is maximum, and the air support space is minimum. 

 
 

Figure 1: Schematic sketch of a biogas storage system (left), No gas pressure in the biogas-silo, gas 

membrane lies on the belts (right) 

In the static calculation, the external loads must be safely transferred regardless of the situation in the 

gas and air support space. 

Before we come to the calculation results for different variants of cutting patterns, we want to deepen 

the background of Formfinding and Statics of chambered membranes. 

3 Formfinding 

The theory of the Formfinding of pneumatic chambers has its basics in the well-known Force-Density 

Method ([1], [2] and [3]). The Force-Density Method creates a linear system of equations for the 

form-finding procedure by defining the ratio between Force S and stressed length l to be known. 

Hereby the nonlinear equations of the equilibrium change to a linear system. 

 

Figure 2: Four cables in point C 

In order to clarify these facts Fig. 1 shows a point C which is connected by cables to 4 points (1,2,3,4). 

The nonlinear equations of the equilibrium in the point C are as follows, where the external load 

vector can be expressed 𝒑𝑡 = (𝑝𝑥 𝑝𝑦 𝑝𝑧). 
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𝑆3

𝑙3
+ (𝑧𝑐 − 𝑧4)

𝑆4

𝑙4
= 𝑝𝑧

 (1) 

These equations become linear by assuming known force-densities, e.g.  𝑞1 =
𝑆1

𝑙1
, and analogue for q2, 

q3 and q4. The force-density equations are as follows: 

(𝑥𝑐 − 𝑥1)𝑞1 + (𝑥𝑐 − 𝑥2)𝑞2 + (𝑥𝑐 − 𝑥3)𝑞3 + (𝑥𝑐 − 𝑥4)𝑞4 = 𝑝𝑥

(𝑦𝑐 − 𝑦1)𝑞1 + (𝑦𝑐 − 𝑦2)𝑞2 + (𝑦𝑐 − 𝑦3)𝑞3 + (𝑦𝑐 − 𝑦4)𝑞4 = 𝑝𝑦

(𝑧𝑐 − 𝑧1)𝑞1 + (𝑧𝑐 − 𝑧2)𝑞2 + (𝑧𝑐 − 𝑧3)𝑞3 + (𝑧𝑐 − 𝑧4)𝑞4 = 𝑝𝑧

 (2) 

The coordinates of the point C are the solution of these linear equations. In the following step we want 

to write the system above by considering m neighbors in the point C: 

∑(𝑥𝑖 − 𝑥𝑐)𝑞𝑖 − 𝑝𝑥

𝑚

𝑖=1

= 0

∑(𝑦𝑖 − 𝑦𝑐)𝑞𝑖 − 𝑝𝑦

𝑚

𝑖=1

= 0

∑(𝑧𝑖 − 𝑧𝑐)𝑞𝑖 − 𝑝𝑧

𝑚

𝑖=1

= 0

 (3) 

The energy which belongs to the system (1) can be written as (see also [4], [5], [6]).  

∏ =
1

2
𝒗𝑡𝑹𝒗 − 𝑝𝑥(𝑥 − 𝑥0) − 𝑝𝑦(𝑦 − 𝑦0) − 𝑝𝑧(𝑧 − 𝑧0) ⇒ 𝑠𝑡𝑎𝑡. (4) 

The internal energy is the expression 
1

2
𝒗𝑡𝑹𝒗. The vector 𝒗𝑡 = (𝑣𝑥 𝑣𝑦 𝑣𝑧)   and the matrix 𝑹 =

𝑑𝑖𝑎𝑔(𝑞𝑖 𝑞𝑖 𝑞𝑖) show this energy with respect to a single line element i  .We can write the inner 

energy as 
1

2
𝑞𝑖(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2),  precisely:  

𝑣𝑥 = 𝑥𝑖 − 𝑥𝑐

𝑣𝑦 = 𝑦𝑖 − 𝑦𝑐

𝑣𝑧 = 𝑧𝑖 − 𝑧𝑐

            𝑹 = [

𝑞𝑖 0 0

𝑞𝑖 0

𝑠𝑦𝑚. 𝑞𝑖

] (5) 

The chamber of a pneumatic structure has a volume V, which is made by an internal pressure pi. The 

product from internal pressure and volume is a part of the total energy  : a given volume V0 leads 

directly to a specific internal pressure pi : hence the total energy for the Formfinding of a pneumatic 

chamber is ∏ =
1

2
𝒗𝑡𝑹𝒗 − 𝑝𝑥(𝑥 − 𝑥0) − 𝑝𝑦(𝑦 − 𝑦0) − 𝑝𝑧(𝑧 − 𝑧0) − 𝑝𝑖(𝑉 − 𝑉0) ⇒ 𝑠𝑡𝑎𝑡. The 

derivation of the total energy to the unknown coordinates and to the unknown internal pressure ends 

up with 
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𝜕∏

𝜕𝑥
= ∑(𝑥𝑖 − 𝑥𝑐)𝑞𝑖 − 𝑝𝑥 − 𝑝𝑖

𝜕𝑉

𝜕𝑥

𝑚

𝑖=1

= 0

𝜕∏

𝜕𝑦
= ∑(𝑦𝑖 − 𝑦𝑐)𝑞𝑖 − 𝑝𝑦 − 𝑝𝑖

𝜕𝑉

𝜕𝑦

𝑚

𝑖=1

= 0

𝜕∏

𝜕𝑧
= ∑(𝑧𝑖 − 𝑧𝑐)𝑞 𝑖 − 𝑝𝑧 − 𝑝𝑖

𝜕𝑉

𝜕𝑧

𝑚

𝑖=1

= 0

𝜕∏

𝜕𝑝𝑖
= 𝑉 − 𝑉0 = 0

 (6) 

In the system (6) the internal pressure pi can be seen as a so-called Lagrange multiplier. The fourth 

column in (6) shows, that our boundary condition 𝑉 = 𝑉0 is obtained by the derivation of the energy to 

this Lagrange multiplier. The vector  (
𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑦

𝜕𝑉

𝜕𝑧
) describes the normal direction in the point (x, y, z) 

and the size is the according area. By a set of given force-densities for all elements and also a given 

volume V0 we end up with a pre-stressed and of course balanced pneumatic system with a volume V0 

and an internal pressure pi. 

4 Statics 

A static calculation for membranes is geometrically nonlinear. We need material properties for all 

elements and its nondeformed geometry. The nondeformed geometry of a cable element for instance is 

the unstressed length of this cable. Next, we need the external loads and the internal pressure or 

volume information. After the Formfinding-procedure a geometry is available, and Statics can be 

performed. 

  

Figure 3: Pneumatic tube systems combined with mechanically stressed membranes 

4.1 Statics with Formfinding models 

When a usual Formfinding procedure was made also prestress values for all elements exist. We can 

define material properties for the membranes and then we can calculate the unstressed ‘lengths’ (= 

non-deformed geometry) of all elements as we have prestress values from the Formfinding result. 

Usually the first load-case in statics to be calculated should be ‘internal operation pressure’.  The 

result of this calculation must be identical with the Formfinding result as we ‘shortened’ the 

membrane elements in this way.  

4.2 Statics with geometrically defined models 

When a geometrical Formfinding was made, prestress values are usually not available or at least these 

values do not balance the structure in general. Here we recommend the following procedure: 

Define the material properties. The unstressed geometry cannot be calculated by prestress values; 

therefore, we simply set the stressed lengths to be the unstressed lengths. Now after the load case 

‘internal operation pressure’ we end up with a different geometry. The geometrical differences should 
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be small in this case. If the geometrically defined form was ‘pneumatic feasible’ the differences are 

only caused by the elastic deformations in the ‘load case’ prestress. 

4.3 Theoretical background 

We extend the form-finding theory by introducing the constitutive equations for the membrane 

elements to the system (1). Now the force-densities q from the form-finding are unknowns and they 

belong to the material equations. 

[
𝜎𝑢

𝜎𝑢

𝜏
] = [

𝑚11 𝑚12 0

𝑚22 0

𝑠𝑦𝑚. 𝑚33

] [

𝜀𝑢

𝜀𝑣

𝛥𝛾
] (7) 

We must consider, that the membrane axial-stress in u- or v- direction can be expressed as 𝜎𝑢 =
𝑆𝑢

𝑏𝑢
 

and 𝜎𝑣 =
𝑆𝑣

𝑏𝑣
. bu and bv are the widths of the u- and v-lines. The force-densities q can be introduced 

now as: 𝑆𝑢 = 𝑞𝑢𝑙𝑢 and 𝑆𝑣 = 𝑞𝑣𝑙𝑣. The strains in u- and v-direction can be written as follows: 

𝜀𝑢 =
𝑙𝑢−𝑙𝑢0

𝑙𝑢0
 and 𝜀𝑣 =

𝑙𝑣−𝑙𝑣0

𝑙𝑣0
 . The angle difference 𝛥𝛾 = 𝛾 − 𝛾0 is needed for the shear-stress 

calculation. 𝛾 is the angle between u and v-direction;  𝛾0refers to the ‘non-deformed start-situation’ 

without any shear-stress.  

The geometrical compatibility has to be considered as follows:  

 𝑙𝑖 == √(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + (𝑧𝑖 − 𝑧𝑐)2 and 𝛾 = 𝑎𝑟𝑐𝑐𝑜𝑠(
𝑙𝑢∗𝑙𝑣

𝑙𝑢𝑙𝑣
), in which (𝑙𝑢 ∗ 𝑙𝑣) means the 

inner (scalar-) product between u and v-direction.  

The shear-stress calculation is guaranteed also for a continuous membrane by the fact that the shear 

angle is between the non-deformed u- and v-direction of the material [4].  

For static calculations we recommend 4 calculation modes: 

1. Given internal pressure p (snow) 

2. Given volume V (water)  

3. Given product 𝑝∙𝑉 (Boyle-Mariotte, for example wind)  

4. Given product 
𝑝∙𝑉

𝑇
 (General gas equation, consideration of temperature) 

𝜕Π

𝜕𝑥
=

1

2

𝜕(𝑣𝑡𝑅𝑣)

𝜕𝑥
− 𝑝𝑥 −

𝜕𝑉

𝜕𝑥
𝑝𝑖 = 0

𝜕Π

𝜕𝑦
=

1

2

𝜕(𝑣𝑡𝑅𝑣)

𝜕𝑦
− 𝑝𝑦 −

𝜕𝑉

𝜕𝑦
𝑝𝑖 = 0

𝜕Π

𝜕𝑧
=

1

2

𝜕(𝑣𝑡𝑅𝑣)

𝜕𝑧
− 𝑝𝑧 −

𝜕𝑉

𝜕𝑧
𝑝𝑖 = 0

𝜕Π

𝜕𝑝𝑖
= 𝑉 − 𝑉0 = 0

 (8) 

Mode 1: The internal pressure pi is no unknown. It is only adapted to the right direction and size 

during the iterations in the nonlinear calculation. 

Mode 2 is standard case for liquid filled membranes. Here we assume that a given Volume V0 is valid 

as fluids are assumed to be incompressible. 

Mode 3 and Mode 4 (consideration of gas-laws) enables the realistic behavior of the internal 

pressure. This mode is important in case of e.g. fast wind gusts. Here the pump systems cannot update 

the inner pressure in the short time. We can see it as a closed system and by considering the 
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temperature as constant we get the gas law of Boyle and Mariotte 𝑝∙𝑉=𝑐𝑜𝑛𝑠𝑡 in this case. Only if the 

gas law is fulfilled the membrane stresses get the correct size. Equation (8) refers to mode 3, here the 

constant value (pabs∙V)0 is the given product and row 4 of (8) has to be fulfilled in iterations where the 

unknown internal pressure pi is adapted. 

 

Figure 4: The physical principles of the gas law (mode 3) 

On the left-hand side of Figure 4 we see an air hall with an absolute inner pressure p1 and a volume 

V1. The absolute inner pressure is the sum of the over pressure in the air hall and the atmospheric 

pressure. On the right-hand side, the structure is loaded by an overall wind suction. By considering the 

Boyle-Mariotte gas law we end up in this case with a higher volume and a lower inner pressure. 

Mode 4 considers also the temperature, the principle itself is the same as mode 3 with minor 

modifications. 

By using these modes most cases are covered. The modes can be used e.g. as follow: 

1. An air hall under snow-loading (a specific internal pressure is set to resist the snow-loads). 

2. A membrane filled with an incompressible fluid (water-bag). 

3. A pneumatic cushion loaded by a fast wind-gust; here, the gas law (𝑝∙𝑉=𝑐𝑜𝑛𝑠𝑡) is valid. 

4. A pneumatic cushion loaded by a fast wind-gust; here, the gas law (
𝑝∙𝑉

𝑇
=𝑐𝑜𝑛𝑠𝑡) is valid. 

It is to mention that the internal pressure effect is always perpendicular to the deformed geometry. 

These loads are called non-conservative as all wind loads. In order to get correct results software 

packages should consider these effects. 

5 Investigation of modelling approaches 

Nowadays, radial cutting patterns are common for biogas tanks above a certain construction height. 

The radial cutting patterns are a production challenge, especially at the polar caps. 

  

Figure 5: Radial (left) and parallel (right) cutting patterns 
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In order to avoid production difficulties, it is desirable to build plants with parallel cutting patterns. 

The polar caps are now side caps, but only with the half side. Those side caps are usually made also 

from membrane material with ‘rotated’ material directions.’ 

5.1 Computer model 

The implementation of the biogas storage systems in our software system is described below. In the 

case of radial cutting patterns (as shown in Figure Figure 5 (left)), the outer shell is modelled with a 

radial net. The same applies to the gas membrane. In our computer model 2 chambers (gas space and 

air support space) are generated by surface elements (triangles) and can be controlled individually. In 

the case of parallel cutting patterns, regular networks can be used. The following picture shows our 

model with radial meshes. 

 

Figure 6: Double Chamber with warp- and weft 

directions of the textile fabric 

 

Figure 7: 2 chambers are described by triangular 

surface elements 

 

5.2 Results of static calculations for radial and parallel cutting patterns 

In our calculation we used non-conservative wind loads. We have applied the material properties as 

follows. It should be noted that the material values at the polar and side caps are doubled. 

𝐸1000 𝐸2000 𝐸𝐶𝑟𝑖𝑚𝑝 𝐸𝑆ℎ𝑒𝑎𝑟 

800 500 200 50 

1600 1000 400 100 

Table 1: Membrane material properties 

  

Figure 8: Figure 9: Parallel patterns (warp and weft directions) (gas and outer membrane) with 2 side caps 

   

Figure 10: Wind load zone under 3 different wind directions (0°, 45° und 90°). 

We have essentially calculated 6 different load cases for different situations. Different filling levels of 

the gas space were assumed. The 6 load cases were as follows: 

  



Proceedings of the IASS Annual Symposium 2019 – Structural Membranes 2019 

Form and Force  
 

 
 

8 

 

• Self-weight and internal pressure. 

• Self-weight and increased internal pressure. 

• Self-weight, internal pressure and wind 0°. 

• Self-weight, internal pressure and wind 45°. 

• Self-weight, internal pressure and wind 90°. 

• Self-weight, internal pressure and snow. 

6 Contact 

Contact between outer and inner membrane was considered in case of wind loads; contact happens 

especially when the gas-membrane is fully stressed with maximum gas volume. The calculation 

considering contact is important for the right size of the volumes of the air- and gas-space volume and 

so for the internal pressures in case of gas-law calculations. 

 

 

Figure 11: 2 membrane surfaces in contact. Side view (Left), perspective view (right) 

7 Conclusion 

The differences between the radial and parallel cutting patterns in relation to the size of the maximum 

membrane stresses were very small. This means that the parallel cutting patterns, which are much 

easier to produce, can be used in the future. 
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