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Abstract

The task of determining appropriate forms for stressed membrane surface structures is
considered. Following a brief introduction to the field, the primitive form-finding techniques
which were traditionally used for practical surface design are described. The general
concepts common to all equilibrium modelling systems are next presented, before a more
detailed exposition of the Force Density Method. The extension of the Force Density Method
to geometrically non-linear elastic analysis is described. A brief overview of the Easy
lightweight structure design system is given with particular emphasis paid to the formfinding
and statical analysis suite. Finally, some examples are used to illustrate the flexibility and
power of Easy's formfinding tools.

The task of generating planar cutting patterns for stressed membrane surface structures is next
considered. Following a brief introduction to the general field of cutting pattern generation,
the practical constraints which influence textile surface structures are presented. Several
approaches which have been used in the design of practical structures are next outlined.
These include the physical paper strip modelling technique, together with geodesic string
relaxation and flattening approaches. The combined flatten and planar sub-surface
regeneration strategy used in the Easy design system is then described. Finally, examples are
given to illustrate the capabilities of Easy “s cutting pattern generation tools.

Introduction

Opposite to the design of conventional structures a formfinding procedure is needed with
respect to textile membrane surfaces because of the direct relationship between form and
force distribution. In general there are two possibilities to perform the formfinding
procedures: the physical formfinding procedure and the analytical one. The physical
modelling of lightweight structures has limitations with respect to numbers for the
coordinates of the surfaces: a scale problem exists. Therefore the computational modelling of
lightweight structures becomes more and more important; without this technology lightweight
structures cannot be built.

Analytical Formfinding

The analytical formfinding theories are Finite Element Methods: the surfaces are divided into
a number of small finite elements as triangles for example. Therefore all possible geometries
can be calculated. There are two theories: the linear Force Density Approach with links as
finite elements and the nonlinear Dynamic Relaxation Methode with finite triangles.
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The Force Density Method

The Force Density Method was first published in [1] and extended in [2-3, 9]. It is a
mathematical strategy for solving the equations of equilibrium for any type of cable network,
without requiring any initial coordinates of the structure. This is achieved through the
exploitation of a mathematical trick. The essential ideas are as follows. Pin-jointed network
structures assume the state of equilibrium when internal forces s and external forces p are
balanced.

Figure 1: Part of a cable network.

C =

In the case of node i in Figure 1,
s, cos(a, x) + s, cos(b,x) +s.cos(c,x) +s, cos(d,x) = p,
S, €0s(a,y) +s, cos(b,y) +s.cos(c, y) +s, cos(d,y) = p,
s, cos(a,z)+s,cos(b,z)+s.cos(c,z)+s,cos(d,z)=p,

where s_, s,, S, and s, are the bar forces and f.i. cos(a,x) is the normalised projection length

of the cable a on the x-axis. These normalised projection lengths can also be expressed in the
form (x,—Xx;)/a. Substituting the above cos values with these coordinate difference

expressions results in

%(Xm_xi)-l_%)(xj _Xi)"‘%c(xk _Xi)"‘SFd(Xl —X;)= P,
s, s S, s
;(ym—yi)ﬁ’(yj —yi)+;(yk —yi)+g“(y| - Yi)=p,

S S S S
;a(zm_zi)+gb(zj _Zi)+Fc(Zk _Zi)+Fd(z| _Zi): p,.

In these equations, the lengths a, b, ¢ and d are nonlinear functions of the coordinates. In
addition, the forces may be dependent on the mesh widths or on areas of partial surfaces if the
network is a representation of a membrane. If we now apply the trick of fixing the force
density ratio s, / a = q, for every link, linear equations result.
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These read
o (X =X )+ 0 (X} = %) + G (X = %) + 0y (X, —%;) = P,
Qo (Y = ¥i) + 0 (Y; = Vi) + 0 (Y — Vi) +aa (Y, — Vi) = P,
Ou (20 —2)) + (2 - 2)) + (2 — 2)) + A4 (2, = Z)) = ;.

The force density values g have to be choosen in advance depending on the desired prestress.
The procedure results in practical networks which are reflecting the architectural shapes and
beeing harmonically stressed.

The system of equations assembled is extremely sparse and can be efficiently solved using the
Method of Conjugate Gradients as described in [3].

Analytical Formfinding with technet’s EASY Software

The 4 main steps of the Analytical Formfinding of Textile Membrane with the technet’s
EASY Software are described as follows:

(
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‘ Fasy Expert
Figure 2: Diagram Easy Formfinding.

1. Front and Prepare Formfinding: Definition of all design parameters, of all boundary
conditions as: the coordinates of the fixed points, the warp- and weft direction, the mesh-
size and mesh-mode (rectangular or radial meshes), the prestress in warp- and weft
direction, the boundary cable specifications (sag or force can be choosen).

2. Formfinding: The linear Analytical Formfinding with Force Densities is performed: the
results are: the surface in equilibrium described with all coordinates, the stress in warp-
and weft direction, the boundary cable-forces, the reaction forces of the fixed points. The
stresses in warp and weft-direction and the boundary forces may differ in a small range
with respect to the desired one from Step 1.
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3. Generation of surface elements: The Delaunay triangulation creates triangles within the
meshes of the generated nets; this is essential for the postprocessing (Statical analysis and
Cutting patterns); but also important for the

4. Evaluation- and visualisation tools. Using these tools the results of the formfinding are
judged. The stresses and forces can be visualised, layer reactions can be shown, contour-
lines can be calculated and visualised, cut-lines through the structure can be made.

Force Density Statical Analysis

The Force Density Method can be extended efficiently to perform the elastic analysis of
geometrically non-linear structures. The theoretical background is extensively described in
[3] where it was also compared to the Method of Finite Elements. It was shown that the Finite
Element Method’s formulae can be derived directly from the Force Density Method’s
approach. In addition, the Force Density Method may be seen in a more general way.
According to [3] it has been proven to be numerically more stable for the calculation of
structures subject to large deflections, where sub-areas often become slack.

Prior to any statical analysis, the form-found structure has to be materialised. Applying
Hooke’s law the bar force s, is given by:

a—ao
ao

s, =EA

where A is the area of influence for bar a, E is the modulus of elasticity, and ao is the
unstressed length of bar a. Substituting sa by ga. accordingto g, =s, / a results in:

_ EAa
gJaa + EA

ao

Since a is a function of the coordinates of the bar ends, the materialised unstressed length is a
function of the forcedensity ga, the stressed length a and the stiffness EA.

In order to perform statical structural analysis subject to external load, the unstressed lengths
have to be kept fixed. This can be achieved mathematically by enforcing the equations of
materialisation together with the equations of equilibrium. This system of equations is no
longer linear. The unknown variables of the enlarged system of equations are now the
coordinates x, y, z and the force density values g. Eliminating g from the equations of
equilibrium, by applying the formula above to each bar element, leads to a formulation of
equations which are identically to those resulting from the Finite Element Method. Directly
solving the enlarged system has been shown to be highly numerically stable, as initial
coordinates for all nodes are available, and positive values or zero values for q can be
enforced through the application of powerful damping techniques.

The usual relationship between stress and strain for the orthotropic membrane material is

given by:
|:O-uu :| _ |:e1111 O j||:‘c"uu :|
O-vv O e2222 ‘9vv

The warp-direction u and the weft-direction v are independant from each other; this means:
the stress in warp-direction oy, f.i. is only caused by the modulus of elasticity eji1;; and the
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strain &, in this direction. Because of this independency cable net theories can be used also
for Textile membranes.

In [4] the Force Density Method has been applied very favourably to triangular surface
elements. This triangle elements allow the statical analysis taking into consideration a more
precise material behaviour in case of Textile membranes. Actually the both material
directions u and v are depending from each other; a strain &, leads not only to a stress in u-
direction but also to a stress o in v-direction caused by the modulus of elasticity ej122. The
fact that shear-stress depends on a shear-stiffness ei»;» seems not to be important for
membranes because of its smallness.

Ow €111 G2 0 |l ey
Ow | =] €211 Cox 0 | &,
Guv O O e1212 guv

Using these constitutive equations Finite Element Methods should be applicated. We are
using in this case the finite triangle elements.

Statical Analysis with technet’s EASY Software

The statical Analysis of lightweight structures under external loads can be performed after
two introducing steps:

f‘*g tdtical A Il Y oI

Easy Expert

Figure 3: Diagram Easy Statical Analysis.

1. Prepare: To define stiffnesses to all finite membrane and cable elements, to calculate the
unstressed link lengths by using the assigned stiffnesses and the prestress of the
membrane or the forces in the cables of the formfinding result.
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2. Statical analysis without loads: To check if the result of the statical analysis with the
loads of the formfinding procedure is identical with the formfinding result.

After these two steps, the statical analysis without beam elements for each load case can be
achieved as follows:

1. Load case: To calculate the external load vectors as for example snow, wind or normal
loads.

2. Statical analysis with loads: To perform the nonlinear statical analysis: the approximate
values, which are needed in this nonlinear process, are given by the formfinding result.

Evaluation- and visualisation tools in order to estimate the result of the statical analysis. The
stresses and forces can be visualised and compared with the maximum possible values.
Stresses, forces and layer reactions can be shown, contour-lines can be calculated and
visualised, cut-lines through the structure can be made, deflection of the nodes can be
calculated. A report from all load cases can be generated automatically.

If beam elements are included, the statical analysis under external loads has to be done as
follows: all datas for the beam-elements as cross-section areas, moments of inertia, local
coordinate systems, joints, etc. have to be defined firstly. In order to set all these values in a
convenient way the user is supported by a Beam-Editor in EasyBeam. Then -see above- the
steps 1-3 follow. The Beam Editor is also used for checking the results as internal forces and
moments, layer-reactions, flexibility-ellipsoids, etc.

7+ Beam Editor - C:\Easy\Easy-Kunden\2003\Fessler Model: allianz Load Case: Ig06c \ZHE|E|
Project Loads Result Edit View Options Help

LEH aE® | & e
= View 2wk & Ha =& Parameters =

Options | Focus | Selected Dects |
View | Scale factars
AndyzeResll | AndyzeResut? | Gettings |

Axial forces Shear forces in v | Shear foices in w
& Maxsbdin |Scale MaxiMin |Seale Mai/Min

i om - 100 < 1o

T anmam || : a0 || = 229577

- [ om0 - [ oo - [ om

]—’f -5357.590 : 215671 B 230,702
S0 i} il

Torsional moments Bend. m. around v Bend. m. around w
Soale s/ | Scale tan/bin | Seale astdin

[ [0 o) 100 c| 1o
44578 408.014 E 131108
o | oo c [ ooo [ o

-48.631 652,987 -139.061
0 0.0 an
Axial force: Tarsional moment
* Shownon v  Shown ony
7 Shown on s 7 Shown onw
Al to zero Help
> Console

Eeam Editor: Project path: C\EasyiEssy-Kundent2003iFassler

=l
Translational Points
= @] Model & 16 =
(=] Springs & 4 162 =
@fE| Translations| Points = 4 15 W
) Fiotational Foints & 468
B Beam Links = & 155
(/] Awial Force Links b rffes
@[ TElements T
=7 eams & 17
&[F Mateials @& 158
=] Result @& ke
(] Spiings v | @@ v

Focus: 164

Figure 4: The Easy Beam Editor
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Figure 5: The Munich Allianz Stadium

The in Figure 4 and Figure 5 shown example represents a steel structure with 29200 points
each having 3 unknown coordinates and 21876 steel elements in the statical system. The total
amount of unknowns is therefore 87600 (29200*3). The stiffness matrix taking into
consideration its symmetry consists of 3836880000 ((29300*%29300)/2) elements. The storage
of a matrix with this size is approximately 32 GByte.

In order to solve those systems specific strategies have to be used. In EasyBeam Sparse
Algorithms are applied to find the unknown values; this methods do not store the zero-
elements of the matrix, only the non-zero-elements. The non-zero-elements have to be found
within the matrix by all operations with so-called pointers; this pointers are integer variables
showing the exact position of the non-zero element in the matrix. In our case the unknown X,y
and z-coordinates can be combined to 3 x 3 submatrices; now the stiffness matrix can be
ordered using many 3 x 3 submatrices; all diagonal submatrices are non-zero; most of the
non-diagonal submatrices are zero. If the matrix to be ‘inverted” decomposes into submatrices
the Sparse Algorithms are even more efficient, because of the fact that the pointers are related
to a submatrix and not to a single element; in this context we speak about Hyper Sparse
Methods. The Hyper Sparse Methods can be applied in case of all 2- or 3-dimensional tasks
described by nets; the greater the nets the greater their efficency.

Using Hyper Sparse Methods the total sum of stored non-zero elements in the stiffness matrix
is only 6219672; the storage of this variables is approximately 50 MByte; they can be hold in
RAM without problems. The stiffness matrix has only 0.16% non-zero-elements; this small
number is absolutely usual in case of big nets. The computer speed of the solver is of course
a function from the number of stored elements; in our example the speed for the calculation of
one loadcase is more or less 1 minute per iteration and after 10-15 iterations the system is in
equilibrium; this can be accepted in our opinion. During the generation of the statical system
many loadcases have to be calculated in order to optimize the structure: this means that
software products being extremely slower (factor 10 or even more) cannot be used for
structures this size. In the optimization stage EasyBeam supports the user by viewing
flexibility ellipsoids showing the weak parts of a structure in a simple way. The ellipsoids are
generated by the deflections of the point, when a unit-load is rotating around the point [11].
On the righthand side of Figure 5 the flexibility ellipsoids of a cable dome (System Geiger)
show the big horizontal flexibility of the points in the upper layer. The system on the left hand
Is improved with respect to this behaviour by introducing diagonal cables in the upper layer.
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Figure 6: Flexibility ellipsoids in Easy Beam

The Formfinding Procedure and the Statical Analysis of Pneumatic Structures can be
performed with EasyForm and EasySan only as a first approximation because of the fact,
that the external loads are conservative loads. Conservative loads do not change their size and
direction during the loading procedure. The internal pressure in Pneumatic Structures is a
value depending on the size and the normal vector of the pneumatic system; therefore the use
of “non-changing” conservative loads for the internal pressure can only be an approximation.
In EasyVol the internal pressure is changing its direction and size depending on the loaded
area. Generally 3 possibilities are available in EasyVol

o Internal pressure p is fixed and the volume V of the pneumatic structure is unknown
e Volume Vis fixed and the internal pressure p is unknown
e The product from internal pressure p and volume V is known (p*V=given)

The described possibilities are related to both Formfinding and Statical Analysis of
Pneumatic Structures. The way to formfind and to analyse pneumatics is usually as follows:
Firstly Formfinding under a known inner pressure p (or with a given volume V) and desired
prestress values in the membrane; in a second step — after having done the materialization
with the choosen textile membrane - the Statical Analysis is performed by introducing
external loads as f.i. wind and fixing the product p*V from the formfinding result.

Figure 7: Pneumatic Cushions
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The complete EASY Lightweight Structure Design System

The Easy system is composed of a number of program suites. These are represented
schematically in Figure 8.

EasyForm Formfinding of lightweight structures

EasySan Nonlinear Statical Load Analysis (without Beam elements)
EasyCut Cutting pattern generation

EasyBeam Nonlinear hybride Membrane structures including Beam elements

EasyVol Formfinding and Load Analysis of pneumatic constructions

CAT] |-‘ iR &0 | 3 L0, 50 [ 14.09v: 1093 |

EasyForm EasySan EasyCut

ut i o1
W Jwiea ria | = =
B A4 1 | it [ | [T T e

EasyBeam EasyVol
Figure 8: The Easy program suites.

EasyForm comprises the programs used for data generation together with force density
form-finding. When the EasySan programs are additionally installed statical structural
analysis of non-linear structures becomes possible. The EasyCut programs enable the
generation of high quality planar cutting patterns from EasyForm output.

In most situations the incorporation of geometrically non-linear bending elements to
lightweight structure models is not economically appropriate. Rather, it is more common to
treat the beam supports as fully fixed points. The resulting reaction forces on these points are
then exported to conventional rigid frame design packages as applied loads. When the
resulting deflections are low, such a decoupled analysis is appropriate. When the structure is
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too sensitive for decoupling, the EasyBeam add-on module permits the incorporation of
geometrically non-linear frame elements [5].

EasyForm and EasySan can together deal with all standard pneumatic structural
configurations which have constant internal pressure prestress. In situations with closed
volumes, such as high pressure airbeams, this assumption is not valid. It becomes necessary
to use more sophisticated algorithms which constrain the cell volumes to prescribed values,
and vary the internal pressure accordingly.

Figure 9: Formfinding and statical Analysis under inner pressure and bouyancy

Cutting Pattern Generation of Textile Structures

The theories, which are used to project a 2D surface in 3 dimensional space to a 2D surface
in a plane are very old; they are part of the mathematical field named map projection theories.
For example the Mercator Projection from the 17" century:

, i , Toln
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. N&@ reator Projection | |

Figure 10: Mercator Projection.

The surfaces, which are used in practical membrane structure designs are in general not
developable without distortions. The map projection theories - used for the flattening of
textile membranes - try to minimize the distortions with respect to lengths, angles and areas.
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The applied theory optimizes the total distortion energy by means of the adjustment theory.
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Figure 11: Triangles non deformed (3d) and deformed (2d).

The surface, which has to be flattened is described with finite triangles. The distortion
between the non deformed and deformed situation can be calculated and has to be minimized
for all triangles.

The paper strip method is excatly described in [10]. Practical examples are described in [6-8].
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Figure 12: Paper strip method.

Figure 9 illustrates the paperstrip method. A paper is pressed on the physical surface of the
modell in such a way, that the seam line and the border of the paper are touching themselves
as good as possible. (In general the paperstrip will touch the surface only in the commom line,
with the distance to this line the difference between paperstrip and surface becomes higher.)
In the next step a needle is used to perforate the paperstrip in a certain number of equidistant
points that the neighbouring seam or the boundary line is reached on the shortest way. In
doing so the direction of the needle has to be perpendicular to the surface. The connection of
the holes by straight lines on the flat paperstrip leads to the patterns.

Cutting pattern generation with technet’s EASY Software
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The Cutting pattern generation can be performed in the following four steps:

Eafnninding [ REL ' G{oths Gt Groyy HEtened

i

Figure 13: Diagram Easy Cutting Pattern Generation.
1. Prepare and create geodesic lines: Geodesic lines are created as seam lines.

2. Cut and Grow or Remesh and Flatten: Cutting proceedures are used to cut the surface
into different subsurfaces according to this geodesic lines. Flattening theories are
achieved: map projection, paper strip method.

3. Prepare patterns: Corner points are defined; spline algorithms, boundary adjustment,
compensation and seam allowance are prepared. For each strip individual values f.i. for
compensation can be introduced.

4. Create patterns: Equidistant points on the planar circumference are introduced; boundary
adjustment is performed in order to produce identical seam lengths. Compensation values
are applied to compensate the strips.

Figure 14: Overview Patterns.

Computational Modelling of Lightweight Structures Strébel, D., Singer, P. 12/15



Jop-drawings are produced. The results can be transferred to DXF- or PDF-files; an
overview can be printed. Checks an reports are created automatically.
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Figure 15: Cutting Patterns

Data transfer from EASY to RSTAB
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The newest version of

technet’s Easy Software is able to communicate with the software

RSTAB from Ing.-Software DLUBAL GmbH. The structural elements, the loads and the
results of hybrid constructions, which are calculated with Easy Beam, can easily transferred
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Figure 16: Model in Easy Beam Editor

powerful tools help to create the design. A simple example is shown
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1027 00| 095183 -1600T1| 257482 069455 22600 43E-D1 1-1 [Kommentar) I~
Schnittgriffien stabbez. [ Schnittgioben querschrittshez. | J Auflagerkiafte | [ Knotenveiformungen | gen | I

in figure 16 and 17.
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Figure 17: Model in RSTAB

Lightweight Structures Strobel, D., Singer, P. 14/15



Conclusions

It has been shown that, by using a modular approach for the design of membrane structure
surfaces, the resulting system is extremely powerful and flexible. The very large number of
structures which have been built using the Easy tools (many thousands) prove the validity of
this strategy.
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