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Abstract 
The task of determining appropriate forms for stressed membrane surface structures is 
considered.  Following a brief  introduction to the field, the primitive form-finding techniques 
which were traditionally used for practical surface design are described.  The general 
concepts common to all equilibrium modelling systems are next presented, before a more 
detailed exposition of the Force Density Method.  The extension of the Force Density Method 
to geometrically non-linear elastic analysis is described. A brief overview of the Easy 
lightweight structure design system is given with particular emphasis paid to the formfinding 
and statical analysis suite.  Finally, some examples are used to illustrate the flexibility and 
power of Easy's formfinding tools.  

The task of generating planar cutting patterns for stressed membrane surface structures is next 
considered.  Following a brief  introduction to the general field of cutting pattern generation, 
the practical constraints which influence textile surface structures are presented.  Several 
approaches which have been used in the design of practical structures are next outlined.  
These include the physical paper strip modelling technique, together with geodesic string 
relaxation and flattening approaches.  The combined flatten and planar sub-surface 
regeneration strategy used in the Easy design system is then described.  Finally, examples are 
given to illustrate the capabilities of Easy ´s cutting pattern generation tools. 

Introduction 
Opposite to the design of conventional structures a formfinding procedure is needed with 
respect to textile membrane surfaces because of the direct relationship between form and 
force distribution. In general there are two possibilities to perform the formfinding 
procedures: the physical formfinding procedure and the analytical one. The physical 
modelling of lightweight structures has limitations with respect to numbers for the 
coordinates of the surfaces: a scale problem exists. Therefore the computational modelling of 
lightweight structures becomes more and more important; without this technology lightweight 
structures cannot be built.   

Analytical Formfinding 
The analytical formfinding theories are Finite Element Methods: the surfaces are divided into 
a number of small finite elements as triangles for example. Therefore all possible geometries 
can be calculated. There are two theories: the linear Force Density Approach with links as 
finite elements and the nonlinear Dynamic Relaxation Methode with finite triangles.  
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The Force Density Method 
The Force Density Method was first published in [1] and extended in [2-3, 9].  It is a 
mathematical strategy for solving the equations of equilibrium for any type of cable network, 
without requiring any initial coordinates of the structure.  This is achieved through the 
exploitation of a mathematical trick.  The essential ideas are as follows.  Pin-jointed network 
structures assume the state of equilibrium when internal forces s and external forces p are 
balanced. 

 

 
Figure 1: Part of a cable network. 

 

In the case of node i in Figure 1, 
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where s s s sa b c d,  ,   and  are the bar forces and f.i. cos(a,x) is the normalised projection length 
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form ( ) /x x am i− .  Substituting the above cos values with these coordinate difference 
expressions results in 
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In these equations, the lengths a, b, c and d are nonlinear functions of the coordinates.  In 
addition, the forces may be dependent on the mesh widths or on areas of partial surfaces if the 
network is a representation of a membrane.  If we now apply the trick of fixing the force 
density ratio s a qa a/ =  for every link, linear equations result.  
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 These read 
q x x q x x q x x q x x pa m i b j i c k i d l i x( ) ( ) ( ) ( )− + − + − + − =  
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q z z q z z q z z q z z pa m i b j i c k i d l i z( ) ( ) ( ) ( )− + − + − + − = . 

The force density values q have to be choosen in advance depending on the desired prestress. 
The procedure results in practical networks which are reflecting  the architectural shapes and 
beeing  harmonically stressed. 

The system of equations assembled is extremely sparse and can be efficiently solved using the 
Method of Conjugate Gradients as described in [3]. 

Analytical Formfinding with technet’s EASY Software 
The 4 main steps of the Analytical Formfinding of Textile Membrane with the technet’s 
EASY Software are described as follows: 

 
Figure 2: Diagram Easy Formfinding. 

1. Front and Prepare Formfinding: Definition of all design parameters, of all boundary 
conditions as: the coordinates of the fixed points, the warp- and weft direction, the mesh-
size and mesh-mode (rectangular or radial meshes), the prestress in warp- and weft 
direction, the boundary cable specifications (sag or force can be choosen). 

2. Formfinding: The linear Analytical Formfinding with Force Densities is performed: the 
results are: the surface in equilibrium described with all coordinates, the stress in warp- 
and weft direction, the boundary cable-forces, the reaction forces of the fixed points. The 
stresses in warp and weft-direction and the boundary forces may differ in a small range 
with respect to the desired one from Step 1. 
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3. Generation of surface elements: The Delaunay triangulation creates triangles within the 
meshes of the generated nets; this is essential for the postprocessing (Statical analysis and 
Cutting patterns); but also important for the    

4. Evaluation- and visualisation tools. Using these tools the results of the formfinding are 
judged. The stresses and forces can be visualised, layer reactions can be shown, contour-
lines can be calculated and visualised, cut-lines through the structure can be made. 

Force Density Statical Analysis  
The Force Density Method can be extended efficiently to perform the elastic analysis of 
geometrically non-linear structures. The theoretical background is extensively described in  
[3] where it was also compared to the Method of Finite Elements. It was shown that the Finite 
Element Method’s formulae can be derived directly from the Force Density Method’s 
approach. In addition, the Force Density Method may be seen in a more general way.  
According to  [3] it has been proven to be numerically more stable for the calculation of 
structures subject to large deflections, where sub-areas often become slack. 

Prior to any statical analysis, the form-found structure has to be materialised. Applying 
Hooke’s law the bar force sa is given by: 
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where A  is the area of influence for bar a, E is the modulus of elasticity, and a0 is the 
unstressed length of  bar a. Substituting sa  by  qa according to q s aa a= /  results in: 
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Since a is a function of the coordinates of the bar ends, the materialised unstressed length is a 
function of the forcedensity qa,  the stressed length a and the stiffness EA. 

In order to perform statical structural analysis subject to external load, the unstressed lengths 
have to be kept fixed. This can be achieved mathematically by enforcing the equations of 
materialisation together with the equations of equilibrium. This system of equations is no 
longer linear. The unknown variables of the enlarged system of equations are now the 
coordinates x, y, z and the force density values q.  Eliminating q from the equations of 
equilibrium, by applying the formula above to each bar element, leads to a formulation of 
equations which are identically to those resulting from the Finite Element Method. Directly 
solving the enlarged system has been shown to be highly numerically stable, as initial 
coordinates for all nodes are available, and positive values or zero values for q can be 
enforced through the application of powerful damping techniques.  

The usual relationship between stress and strain for the orthotropic membrane material is 
given by: 

 

The warp-direction u and the weft-direction v are independant from each other; this means: 
the stress in warp-direction σuu  f.i. is only caused by the modulus of elasticity  e1111 and the 
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strain εuu in this direction. Because of this independency cable net theories can be used also 
for Textile membranes. 

In [4] the Force Density Method has been applied very favourably to triangular surface 
elements. This triangle elements allow the statical analysis taking into consideration a more 
precise material behaviour in case of Textile membranes. Actually the both material 
directions u and v are depending from each other; a strain εuu leads not only to a stress in u-
direction but also to a stress σvv in v-direction caused by the modulus of elasticity e1122. The 
fact that shear-stress depends on a shear-stiffness e1212  seems not to be important for 
membranes because of its smallness.  

 
Using these constitutive equations Finite Element Methods should be applicated. We are 
using in this case the finite triangle elements.  

Statical Analysis with technet’s EASY Software 
The statical Analysis of lightweight structures under external loads can be performed after 
two introducing steps: 

 
Figure 3: Diagram Easy Statical Analysis. 

1. Prepare: To define stiffnesses to all finite membrane and cable elements, to calculate the 
unstressed link lengths by using the assigned stiffnesses and the prestress of the 
membrane or the forces in the cables of the formfinding result. 
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2. Statical analysis without loads: To check if the result of the statical analysis with the 
loads of the formfinding procedure is identical with the formfinding result. 

After these two steps, the statical analysis without beam elements for each load case can be 
achieved as follows: 

1. Load case: To calculate the external load vectors as for example snow, wind or normal 
loads. 

2. Statical analysis with loads: To perform the nonlinear statical analysis:  the approximate 
values, which are needed in this nonlinear process, are given by the formfinding result. 

Evaluation- and visualisation tools in order to estimate the result of the statical analysis. The 
stresses and forces can be visualised and compared with the maximum possible values. 
Stresses, forces and layer reactions can be shown, contour-lines can be calculated and 
visualised, cut-lines through the structure can be made, deflection of the nodes can be 
calculated. A report from all load cases can be generated automatically. 

If beam elements are included, the statical analysis under external loads has to be done as 
follows: all datas for the beam-elements as cross-section areas, moments of inertia, local 
coordinate systems, joints, etc. have to be defined firstly. In order to set all these values in a 
convenient way the user is supported by a Beam-Editor in EasyBeam. Then -see above- the 
steps 1-3 follow. The Beam Editor is also used for checking the results as internal forces and 
moments, layer-reactions, flexibility-ellipsoids, etc.  

 
 

Figure 4: The Easy Beam Editor 
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Figure 5: The Munich Allianz Stadium 

 

The in Figure 4 and Figure 5 shown example represents a steel structure with 29200 points 
each having 3 unknown coordinates and 21876 steel elements in the statical system. The total 
amount of unknowns is therefore 87600 (29200*3). The stiffness matrix taking into 
consideration its symmetry consists of 3836880000 ((29300*29300)/2) elements. The storage 
of a matrix with this size is approximately 32 GByte.  

In order to solve those systems specific strategies have to be used. In EasyBeam Sparse 
Algorithms are applied to find the unknown values; this methods do not store the zero-
elements of the matrix, only the non-zero-elements. The non-zero-elements have to be found 
within the matrix by all operations with so-called pointers; this pointers are integer variables 
showing the exact position of the non-zero element in the matrix. In our case the unknown x,y  
and z-coordinates can be combined to 3 x 3 submatrices; now the stiffness matrix can be 
ordered using many 3 x 3 submatrices; all diagonal submatrices are non-zero; most of the 
non-diagonal submatrices are zero. If the matrix to be ‘inverted’ decomposes into submatrices 
the Sparse Algorithms are even more efficient, because of the fact that the pointers are related 
to a submatrix and not to a single element; in this context we speak about Hyper Sparse 
Methods. The Hyper Sparse Methods can be applied in case of all 2- or 3-dimensional tasks 
described by nets; the greater the nets the greater their efficency.   

Using Hyper Sparse Methods the total sum of stored non-zero elements in the stiffness matrix 
is only 6219672; the storage of this variables is approximately 50 MByte; they can be hold in 
RAM without problems. The stiffness matrix has only 0.16% non-zero-elements; this small 
number is absolutely usual in case of big nets. The computer speed of the solver is of course  
a function from the number of stored elements; in our example the speed for the calculation of 
one loadcase is more or less 1 minute per iteration and after 10-15 iterations the system is in 
equilibrium; this can be accepted in our opinion. During the generation of the statical system 
many loadcases have to be calculated in order to optimize the structure: this means that 
software products being extremely slower (factor 10 or even more) cannot be used for 
structures this size. In the optimization stage EasyBeam supports the user by viewing 
flexibility ellipsoids showing the weak parts of a structure in a simple way. The ellipsoids are 
generated by the deflections of the point, when a unit-load is rotating around the point [11]. 
On the righthand side of Figure 5 the flexibility ellipsoids of a cable dome (System Geiger) 
show the big horizontal flexibility of the points in the upper layer. The system on the left hand 
is improved with respect to this behaviour by introducing diagonal cables in the upper layer.   
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 Figure 6: Flexibility ellipsoids in Easy Beam 

The Formfinding Procedure and the Statical Analysis of Pneumatic Structures can be 
performed with EasyForm and EasySan only as a first approximation because of the fact, 
that the external loads are conservative loads. Conservative loads do not change their size and 
direction during the loading procedure.  The internal pressure in Pneumatic Structures is a  
value depending on the size and the normal vector of the pneumatic system; therefore the use 
of “non-changing” conservative loads for the internal  pressure can only be an approximation. 
In EasyVol the internal pressure is changing its direction and size depending on the loaded 
area. Generally 3 possibilities are available in EasyVol 

• Internal pressure p is fixed and the volume V of the pneumatic structure is unknown 

• Volume V is fixed  and  the internal pressure p is unknown 

• The product from internal pressure p and volume V is known  (p*V=given) 

The described possibilities are related to both Formfinding and Statical Analysis of 
Pneumatic Structures. The way to formfind and to analyse pneumatics is usually as follows: 
Firstly Formfinding under a known inner pressure p (or with a given volume V) and desired 
prestress values in the membrane; in a second step – after having done the materialization 
with the choosen textile membrane - the Statical Analysis is performed by introducing 
external loads as f.i. wind and fixing the product  p*V from the formfinding result. 

  

 

 

 

 

 

 

 

 
Figure 7: Pneumatic Cushions 
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The complete EASY Lightweight Structure Design System 
The Easy system is composed of a number of program suites.  These are represented 
schematically in Figure 8. 

EasyForm Formfinding of lightweight structures 

EasySan Nonlinear Statical Load Analysis (without Beam elements) 

EasyCut Cutting pattern generation 

EasyBeam Nonlinear hybride Membrane structures including Beam elements 

EasyVol Formfinding and Load Analysis of pneumatic constructions 

 

   
 

EasyForm                                   EasySan                                EasyCut 

   

EasyBeam                                                       EasyVol 

Figure 8: The Easy program suites. 

EasyForm comprises the programs used for data generation together with force density 
form-finding. When the EasySan programs are additionally installed statical structural 
analysis of non-linear structures becomes possible.  The EasyCut programs enable the 
generation of high quality planar cutting patterns from EasyForm output. 

In most situations the incorporation of geometrically non-linear bending elements to 
lightweight structure models is not economically appropriate.  Rather, it is more common to 
treat the beam supports as fully fixed points.  The resulting reaction forces on these points are 
then exported to conventional rigid frame design packages as applied loads.  When the 
resulting deflections are low, such a decoupled analysis is appropriate.  When the structure is 
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too sensitive for decoupling, the EasyBeam add-on module permits the incorporation of 
geometrically non-linear frame elements [5]. 

EasyForm and EasySan can together deal with all standard pneumatic structural 
configurations which have constant internal pressure prestress.  In situations with closed 
volumes, such as high pressure airbeams, this assumption is not valid.  It becomes necessary 
to use more sophisticated algorithms which constrain the cell volumes to prescribed values, 
and vary the internal pressure accordingly. 

 
 
 
 
 
 
 
 
 

Figure 9: Formfinding and statical Analysis under inner pressure and bouyancy 

Cutting Pattern Generation of Textile Structures 
The  theories, which are used to project a 2D surface in 3 dimensional space to a 2D surface 
in a plane are very old; they are part of the mathematical field named map projection theories. 
For example the Mercator Projection from the 17th century: 

Figure 10: Mercator Projection. 

The surfaces, which are used in practical membrane structure designs are in general not 
developable without distortions. The map projection theories - used for the flattening of 
textile membranes - try to minimize the distortions with respect to lengths, angles and areas.  
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The applied theory optimizes the total distortion energy by means of the adjustment theory. 

 

Figure 11: Triangles non deformed (3d) and deformed (2d). 

 

The surface, which has to be flattened is described with finite triangles. The distortion 
between the non deformed and deformed situation can be calculated and has to be minimized 
for all triangles. 

 

The paper strip method is excatly described in [10]. Practical examples are described in [6-8]. 

 

Figure 12: Paper strip method. 

Figure 9 illustrates the paperstrip method. A paper is pressed on the physical surface of the 
modell in such a way, that the seam line and the border of the paper are touching themselves 
as good as possible. (In general the paperstrip will touch the surface only in the commom line, 
with the distance to this line the difference between paperstrip and surface becomes higher.)  
In the next step a needle is used to perforate the paperstrip in a certain number of equidistant 
points that the neighbouring seam or the boundary line is reached on the shortest way. In 
doing so the direction of the needle has to be perpendicular to the surface. The connection of 
the holes by straight lines on the flat paperstrip leads to the patterns. 

  

Cutting pattern generation with technet’s EASY Software 
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The Cutting pattern generation can be performed in the following four steps: 

 
Figure 13: Diagram Easy Cutting Pattern Generation. 

1. Prepare and create geodesic lines: Geodesic lines are created as seam lines. 

2. Cut and Grow or Remesh and Flatten: Cutting proceedures are used to cut the surface 
into different subsurfaces according to this geodesic lines. Flattening theories are 
achieved: map projection, paper strip method. 

3. Prepare patterns: Corner points are defined; spline algorithms, boundary adjustment, 
compensation and seam allowance are prepared. For each strip individual values f.i. for 
compensation can be introduced.  

4. Create patterns: Equidistant points on the planar circumference are introduced; boundary 
adjustment is performed in order to produce identical seam lengths. Compensation values 
are applied to compensate the strips. 

 
Figure 14: Overview Patterns. 



Computational Modelling of Lightweight Structures  Ströbel, D., Singer, P. 13/15 

Jop-drawings are produced. The results can be transferred to DXF- or PDF-files; an 
overview can be printed. Checks an reports are created automatically.  

 
 

Figure 15: Cutting Patterns 

Data transfer from EASY to RSTAB 
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The newest version of technet’s Easy Software is able to communicate with the software 
RSTAB from Ing.-Software DLUBAL GmbH. The structural elements, the loads and the 
results of hybrid constructions, which are calculated with Easy Beam, can easily transferred  

 
Figure 16: Model in Easy Beam Editor 

into the RSTAB, where powerful tools help to create the design. A simple example is shown 

 
Figure 17: Model in RSTAB 

in figure 16 and 17.  
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Conclusions 
It has been shown that, by using a modular approach for the design of membrane structure 
surfaces, the resulting system is extremely powerful and flexible. The very large number of 
structures which have been built using the Easy tools (many thousands) prove the validity of 
this strategy. 
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