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Abstract. This paper describes the historical development of Force Density Method
techniques for analytical form-finding, statical analysis and the determination of workshop
drawings of lightweight structures from 1970 to the present day. Particular attention is
directed to the key developments made at The University of Suttgart’s Ingtitute for the
Application of Geodesy in Civil Engineering (IAGB); at the Technical University of Berlin's
Institute of Geodesy and Geomatics, and within the specialised software company technet
GmbH. Attention is concentrated on the calculation of mechanically prestressed cable nets
and membranes, minimal surfaces and pneumatically prestressed constructions.
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1 Introduction

1.1 The Situation Before 1970

Although prestressed structures like tents belong to the first man-made structures, little was
known about the analytical modelling of their load deflection behaviour. Prestressed cable-
nets and textile membranes are characterised by the inherent interaction between their
geometry and stress distribution. This relationship between the form and forces makes it
impossible to directly design such structures as is the case with conventional structures.

When in 1967 the German Pavillion for the Montreal EXPO was built, no practical analytical
solution technique was available to determine the cable-net form, cutting pattern and
behaviour under external load. At that time the only way for the design and the realisation of
such nets was to use physical models.

Finding a feasible form requires the determination of a figure of equilibrium of inner forces
and loads for the structure. This typically results in a doubly curved surface. Mathematically
these surfaces could only be roughly approximated by differential equations. As doubly
curved surfaces can not be flattened without distortion, the generation of precise cutting
patterns is required for fabrication. Finally the structure will undergo large deflections under
acting loading conditions which means that analytical methods would have to be able to cope
with that.

1.2 Analytical Form-finding and the Force Density M ethod

To design the cable-net roofs for the 1972 Munich Olympic Games stadium, Frei Otto built
precise physical models which were intended to be the source of information for all relevant
data. Linkwitz proposed to measure the models precisely applying close range photo-
grammetric methods which would allow for a simultaneous determination of the 3D-geometry
of the model without touching it. It was realised however that the models were by no means
precise enough to derive the cutting pattern for an equal mesh cable net made from steel.

The photogrammetric measurements of the physical models had to be modified in order to
fulfil the constraints of equal unstressed mesh-width and of force equilibrium at each node.
The analytical solution for this task was achieved by applying the method of least squares to
the measured nodal coordinates [1], [4] observing the boundary conditions above. Applying
this technique, the cutting pattern for the stadium roof was created in a time consuming but
successful procedure using all the computer power available at that time.

In 1971 Linkwitz and Schek [1] discovered a new formulation of the figure of equilibrium of
forces, the force-density formulation. They realised that this was more appropriate for solving
the problem, especially that of finding good initial geometry.
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Figure 1: Munich Olympic Stadia cable-net model.

In order to solve the numerous open problems associated with wide-span prestressed
structures, an interdisciplinary research group at Stuttgart University was established and
funded by the German Research Foundation. Thiswasthe SFB 64 on Lightweight Structures.

2 Force Density Algorithmsfor Pin-jointed Networ ks

2.1 Linear Form-finding

The properties of the Force Density Method were subsequently studied thoroughly [2], [4]
and the method could be implemented in an efficient way by applying special sparse matrix
techniques for solving the resulting equations. It proved to be a powerful tool for setting up
and solving the equations of equilibrium for prestressed networks and structural membranes,
without requiring any initial coordinates of the structures[3], [5].

The essential ideas are as follows. Pin-jointed network structures assume the state of
equilibrium when internal forces s and external forces p are balanced
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Figure 2. Part of a cable network.

In the case of nodei in Figure 2, the equations read,

S, cos(a, X) + s, cos(b, X) +s. cos(c, X) +s, cos(d,x) = p,
s, cos(a, y) +s,cos(b, y) +s cos(c,y) +s,co(d,y) = p,
s, cos(a, z) +s,cos(b, z) +s,cos(c,z) +s,co8(d, z2) = p,

where S $» Sc @d'S; gre the bar forces and cos(a,x) are the projection lengths of the
normalised cable lengths on the x-axis. Substituting the above cosine values by the normalised

projection lengths of the form (X» =X)/ @ resuitsiin,

Sa SC S —
Tl =)+ 20 =x)HE( X+ -x) = p,
Sa SC S —
E(ym_yi)-'-%(yj_yi)+€(yk_yi)+gd(yl_yi) = Py
S, S, S B
E(Zm_zi)-'-%(zj_Zi)+€(zk_zi)+gd(z|_zi) = P,

In these equations, the lengths a, b, ¢ and d are non-linear functions of the coordinates. In
addition, the forces are dependent on the unstressed mesh widths and on Hooke's law.
Substituting these functions would lead to afinite element formulation as shown in [4].

Based on the interaction of form and forces, the form-finding process aims to receive the
geometry of a form with a desired prestress and a surface discretisation of a desired mesh-
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width. This initial information can be brought together in force density parameters S: /2= G|
for every link. The resulting linear equations read,

0o (X = %)+, (X, =%) + 0. (X = %) + g (X =X%) = Py
qa(ym_yi)+qb(yj_yi)+qc(yk_yi)+qd(yl_yi) = by
(20 =2)*+0,(2,-2)*q. (% ~2)*+q(z3 -2) = P,

The system of equations assembled is extremely sparse and can be efficiently solved for the
coordinates of the structure using the Conjugate Gradient method as described in [4].

2.2 Geometrically Non-linear Statical Analysis

Asshown in [2] and [4], the Force Density method could be extended efficiently, in order to
efficiently perform the computation of load cases which leads to a non-linear analysis. The set
of formulae of the Finite Element Method can be derived directly from the Force Density’s
formulation. However, the Force Density method has been proven to be numerically more
stable for the calculation of lightweight structures where large deflections often occur, and
where parts of the structure become slack [6].
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Figure 2. Stress and deflection visualisation after geometrically non-linear load analysis [17].
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Prior to any statical analysis, the structure form-found by the linear Force Density equations,
has to be materialised. This can be done without disturbing the state of equilibrium of forces.
For any set of postive g-values, fixed positions and given external forces p there exists a
unique set of coordinates of the nodes of the equilibrated structure. Applying Hooke's law for
the bar force s, resultsin,

a—ao
ao

s. = EA

where A is the cross sectional area of bar a, E the modulus of elagticity, and ag is the
unstressed length of bar a. Substituting s. by ga according to % =S/ @ resultsin,

EAa
ao =
aa+ EA

As a is a function of the coordinates of the bar ends, the materialised unstressed length is a
function of g, and the coordinates. For each g, there exists a corresponding unstressed bar
length ao.

In order to perform statical structura analysis subject to various external loads, the unstressed
lengths have to be kept fixed. This can be achieved mathematically by extending the Force
Density system of equations of equilibrium by the materialisation equations shown above.
The enlarged system of equations is no longer linear in coordinates and force densities. It has
to be linearised using initial values for these parameters. As the Force Density information
from the linear form-finding procedure is naturally available, this proves to be extremely
favourable for achieving convergence. The use of Force Densities as pre-information in the
non-linear problems of statical analysis results in powerful convergence characteristics.

2.3 T-edlements

For an application of the method of force densities to form-finding, the main problem was not
any more of how to get initial coordinates of a structure but how to discretise the surface in
the best way. An automated discretisation process of the surface often resulted in nice regular
meshes inside the structure but unrealistically short connections of the regular network to the
boundary. These short bar connections often built up kinks during the analysis. Correcting the
net interconnection was a time-intensive part in the form-finding process.

In reality a structura membrane has a continuous surface and there is no need to have
common nodes on the edge cables. When two sections of a network representing a membrane
had a common edge cable, the corresponding computer-model developed zig-zag line.
Enforcing the edge-points of corresponding cables of the individual sections to one and the
same node would be time consuming and not solve the problem adequately.
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In [9] the proposal was made to separate the edge cable discretisation from the structure of the
regular inner net. The connection points of the inner net to the boundary would be split
proportional to their distance to the neighbouring discretisation points on the edge cable. This
is achieved simply by replacing the end position of each net connector by the adjacent
common boundary discretisation nodes. In Fig.2 node i is replaced by j and k and prefixed
proportional values m and p which force point i to be between j and k.

Figure 3. Nodes of discretisation and end nodes of cables

Thisreads:
X = MX;+pX
Yo = My, + Ry,
z = Mz +pz

The concept has proven to be successful in the design of sensitive tensile structures [10] and
even works for very short bar connections.

3 Membrane Modelsand Minimal Surfaces

Two discretisation strategies are mainly taken: Equivalent Cable-net Link and Triangular.

3.1 Cable-net Link Discretisation

The task of form-finding of textile membranes may be solved by form-finding a prestressed
net structure. The continuous membrane is approximated by a discretised grid of cables, The
force densities are derived from the desired prestress and the area of influence as described
earlier in this paper.
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This model is valid if the fabric consists of woven material which typically has negligable
shear tiffness. The directions of weft and warp should coincide with the directions of
principal surface curvature. For load analysis the stiffnesses of the discretised bar-elements
can be derived from the area of influence of the discretised surface.

In order to model the Poisson interaction of material properties between warp and weft
cruciform elements can be applied [12]. Typically this is counter-productive as it results in an
increased model complexity without increased accuracy in practice due to the inability to
accurately calibrate the materials.

3.2 Triangular Discretisation

Where the shear-stiffness of the material is significant, triangular elements can be applied. It
was shown in [13] that the method of force densities is also valuable in these
formulations.The mathematical model described in [13] is based on a geometrical and
physical description of the undeformed and deformed state of all triangles of the network. The
triangles will undergo deformations caused by the forces acting in the structure.

The nodal coordinates of the state of equilibrium are defined by the minimum of the inner
energy (the summarised energies of all the triangles) and the negative potential of the external

forces. As a result, the sum of internal and external forces affecting the nodes, tend to zero
when approaching the figure of equilibrium.

3.3 Membrane Elastic Analysis

For general membranes the inner energy to minimised can be read as:
zifatadF - min.
2 F

The material description according to St. Venant-Kirchhoff models a linear relation between
the 2nd Piola-Kirchhoff stress vector and Green's strain vector. It therefore follows that,

Uuu Ellll E1122 0 guu

o, |= E,» 0 En
\/Eauv 2E1212 \/Eguv

where four parameters are defined: the modulus of elasticity in the u and v directions Eji11,
and Ex»o, the modulus of elasticity Eii2,, which models transverse loading and the shear
modulus 2E;212.
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3.4 Minimal Surface Structures

Minimal surfaces are also characterised by the property of a minimal area within a three-
dimensional given boundary. Experimentally such surfaces can be produced by dipping a free
shaped frame into a soap liquid. Lifting the frame, a soap film might fill the frame. Due to the
small influence of the gravity, the soap film represents a minimal surface with a zero mean
curvature and equal surface stress.

Minimal surfaces can be generated numerically based on a triangular network description of
nodes and links. Given a polygonal boundary curve and the inner area represented by
triangles, the search for aminimal surface can be achieved by minimising the sum of the areas
of all triangles [8]. This efficient and robust implementation deals with flexible boundary
configurations as well as fixed curves.

Figure 4. Discretised minimal surface.

Introducing a fictitious stress variable o, the minimum formulation can be defined as a state
of equilibrium [13]. The inner energy [] of the surface is given by,

I'I:UZn:FAi - min.

i=1

where F is the area of one of the n triangles. As shown in [§], it is favourable to use Heron's
guadratic representation for modelling the area of the triangles. In terms of the triangle edge
lengths |4, I, and |3, the area reads,

11 a7
16F2 =12 —1F -2+ 22242022 +222 =12 12 12] -1 1|12
-1(12
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The minimisation of the energy leads to the equations of equilibrium for the nodal coordinates
of the net. For the calculation of minimal surfaces the undeformed triangle geometries are not
required.

According to [13] minimal surfaces can be generated applying the following membrane
material properties,

Ellll E1122 0 0 1 0
E,, O || 0 0
2E,,,, -1

As the undeformed geometry of the triangles do not enter the equations, this membrane
approach can be regarded as analogous to the force-density formulation for prestressed nets,
where the undeformed bar element lengths, are not required in the form-finding process.

3.5 Volume Constrained Pneumatic Structures

Bubbles can be seen as minimal surface structures enclosing a given volume. By enforcing a
constant volume a specific inner pressure will result for each resulting chambers. The volume
of the chamber may be modelled by tetrahedrons, built by the surface triangles and the centre
of gravity of each chamber. The sum of all tetrahedrons gives the volume of one chamber

The energy of the bubble with a given volume V. can be formulated by:

N=0> Fy —k(V -Vc) - min.

i=1

In [13] it was shown that the Lagrangian multiplier k is identical to the inner pressure of the
chamber.

10
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Figure 5. Chambered pneumatic structure.

4 Design of Funicular Grid-shells

4.1 Form-finding

The form-finding of tensile networks subject to vertical self-weight loading results in forms

which will experience pure compression when subjected to inverted self-weight loading. Such
compressive funicular structures were widely used by Gaudi.

Figure 5. Bad Durrheim funicular timber grid shell under construction.
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4.2 Geometrically Non-linear Frame Analysis

Subsequent to tensile funicular form-finding under inverted self weight loading it is necessary
to perform frame stress analysis of the design subject to applied loading. In the case of heavy
rigid structures this can be performed using conventional analysis software. Where the design
is composed of light flexible members, asis typica with timber structures, geometrically non-
linear systems must be used. One of the biggest problems with applying standard FEM
software to this problem is the issue of link slackening on-off non-linearity. By using Force
Dengity techniques a very robust and integrated solution strategy for this problem was
developed in [14].

5 Current Developments

Today attention is being focused on dealing with the large variety of complicated hybrid
structures which are technologically feasible. For example dealing with structures combining
pre-stressed membranes with pneumatic or flexible spline stiffeners is very complex.
Similarly in some structura projects it is necessary to prescribe sophisticated constraints
beyond the simple axial planes. For example, the problem of a membrane sliding over a grid-
shell requires that the membrane to shell on-off contacting problem be solved, as well as
inter-surface frictional modelling.

References

[1] Linkwitz, K. and Schek, H.-J., (1971), "Einige Bemerkungen zur Berechnung von
vorgespannten Seilnetzkonstruktionen,” Ingenieur-Archiv 40, 145-158.

[2] Schek, H.-J., (1974), The force density method for form finding and computation of
general networks,” Computer Methods in Applied Mechanics and Engineering 3, 115
134.

[3] Grindig, L., Schek, H.-J., (1974), "Analytical Form Finding and Analysis of Prestressed
Cable Networks,” International Conference on Tension Roof Structures, London, April
1974.

[4] Grindig, L., (1975), Die Berechnung von vorgespannten Seilnetzen und Hangenetzen
unter Berticksichtigung ihrer topologischen und physikalischen Eigenschaften und der
Ausgleichungsrechnung,” DGK Reihe C, Nr. 216, 1976 and SFB 64-Mitteilungen 34,
1976.

[5] Grundig, L., Hangleiter, U., (1975), ‘Computation of prestressed cable-nets with the force
densities method,” |ASS-Symposium Cable Sructures, Bratislava.

[6] Grindig, L., (1985), The FORCE-DENSITY - Approach and Numerical Methods for the
Calculation of Networks. Proc. of 3. Intern. Symposium Weitgespannte
Flachentragwerke, Stuttgart, March 1985.

12



IASS-IACM 2000, Chania-Crete, Greece

[7] Grindig, L., Bahndorf, J., (1986), "Formfinding of a Roof Structure for a Health Spa,”
First International Conference on Lightweight Structures in Architecture, Sydney,
Australia, August 1986.

[8] Grindig, L., (1988), ‘Minimal Surfaces for Finding Forms of Structural Membranes".
Civil-Comp 87, London, Vol.2, pp 109-114, and Computers and Sructures 3 1988.

[9] Grindig, L. and Bahndorf, J., (1988), "The Design of Wide-Span Roof Structures Using
Micro-Computers,” Computers & Sructures 30, 495-501.

[10] Linkwitz, K., Grindig, L., Bahndorf, J., Neureither, M. and Strébel, D., (1988),

"Optimizing the Shape of the Roof of the Olympic Stadium, Montreal,” Sructural
Engineering Review 1, 225-232.

[11] Grindig, L. and Moncrieff, E., (1993), "Formfinding of Textile Structures,” in Proc.

Sudiedag-Seminaire Textiel strukturen Architecture Textile, Vrije Universiteit Brussel,
25th May 1993.

[12] Bauerle, J., (1995), Ein Beitrag zur Berechnung des Zuschnitts von vorgespannten
Membranen, DGK, Reihe C, Nr. 439.

[13] Singer, P., (1995), Die Berechnung von Minimalflaachen, Seifenblasen, Membrane und
Pneus aus geodéatischer Scht, DGK, Reihe C, Nr. 448.

[14] Strobel, D., (1997), Die Anwendung der Ausgleichungsrechnung auf elastomechanische
Systeme, DGK, Reihe C, Nr. 478.

[15] Grindig, L. and Moncrieff, E., (1998), 'Formfinding, Analysis and Patterning of Regular
and Irregular-Mesh Cablenet Structures,” in Hough, R. and Melchers, R. (Eds.), LSA98:
Lightweight Structuresin Architecture Engineering and Construction Proceedings IASS
39" Congress, October, 1998, Sydney, Australia, IASS/LSAA.

[16] Moncrieff, E., Grundig, L. and Strébel, D., (1999), "The Cutting Pattern Generation of
the Pilgrim’s Tents for Phase |1 of the Mina Valley Project,” in Astudillo, R. and Madrid,

A. J. (Eds)), Proc. IASS 40" Anniversary Congress, September 20-24, 1999, Madrid,
Spain, IASS/ICEDEX.

[17] technet GmbH, (2000), Easy, User manual for integrated surface structure design
software, technet GmbH, Maassenstr. 14, D-10777 Berlin, Germany,
http://www.technet-gmbh.com

13



