Holistic Calculation of (Multi)-Chamber ed
ETFE-Cushions

Dr. Dieter Strobel, Dr. Peter Singer and Jirgen Hol
technet GmbH grundig + partner, Pestalozzistr. 863 Stuttgart, Germany

Abstract

Formfinding, statical analysis and cutting pattgleneration are considered with
respect to a holistic statical calculation; it mgathat a complete model is analysed
under external loadings by taking into consideratiog. the gas-laws for several
chambers and simultaneously any boundary condit{@ss bending stiff beam-
elements).

Extended formfinding therories are presented firsthe extension of the well-
known force density method by additional conditigmslume or inner pressure) to a
so-called volume formfinding is described. Examples single- and multi-
chambered (volume-) formfinding projects are shown.

Statical Analysis of the structures is a problensase of a holistic formulation. The
isotropic material behavior of ETFE-foils is debed by two values (E-modulus
and Poisson's ratio); the constitutive equatiots tioe relationship between stress
and strain and here we need 4 stiffness valueghwarie calculated from the already
mentioned material values for ETFE. To calculateymatic systems with known
internal pressure values is not possible in altlloase situations. E.g. under fast
wind gusts the gas law has to be used; it meangtbéuct from volume and
internal pressure remains constant in the chanmheisg loading. In many cases the
chambered cushions are fixed to a bending stée{stoundary. The deflections of
these steel-elements under loads cannot be negjlantk therefore they have to be
part of the structural (holistic) system.

Patterning of ETFE-cushions has to be made withédsgaccuracy: the reason is
because of the material itself and also becauskeofixed boundaries. We support
the engineers by quality numbers of the patternimgase of many cushions for big



project mass production has to be applied: in ormlenanage it automatic patterning
tools are presented briefly.
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1 Formfinding of Pneumatics

The theory of the Formfinding of pneumatic cushidwas its basics in the well-
known Force-Density Method ([1], [2] and [3]). TRerce-Density Method creates
a linear system of equations for the form-findinggedure by defining the ratio
between Forc& and stressed lengthto be known. Hereby the nonlinear equations
of the equilibrium change to a linear system.

Figure 1. Four cables in point C

In order to clarify these factsg. 1 shows a poin€ which is connected by cables to
4 points (,2,3,4). The nonlinear equations of the equilibrium ie fointC are as

follows, where the external load-vector can be esq;sxedpt =(py P, p,).
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These equations become linear by assuming knovee-densities, e.g.0, :i,
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and analogue fai,, gz andq,. The force-density equations are as follows:

(Xc - X:I.)ql + (Xc - Xz)qz + (Xc - X3)q3 + (Xc - X4)q4 = px
Ve =Ydh+ (Vo= Y)Lt (Vo= Ya)dat (Ye—VY)d = Py
(Zc - Z:I.)ql + (Zc - Zz)qz + (Zc - Z3)q3 + (Zc - Z4)q4 pz



The coordinates of the poif@ are the solution of these linear equations. In the
following step we want to write the above systenctbgsidering m neighbors in the
point C:
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The energy which belongs to the system (1) canriteew as (see also [4] and [5])

1 .
=5V RV =, (X=%,) = P, (Y~ Y,) = P,(z— %) = stat
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The internal energy is the expressifénvt RV . The vectorv' = (VX vy VZ)
and the matrixR = diag(gq, g ) show this energy with respect to a single

1
line elementé .We can write the inner energy aésqi (Vf + V)zl + Vf) , precisely:

v, = XX g 00
Vy = yi_yc R= qi O
v, = z-2 sym g

The chamber of a pneumatic cushion has a voldmehich is made by an internal
pressurep;. The product from internal pressure and voluma igart of the total
energy[1: a given volume/, leads directly to a specific internal pressprehence
the total energy for the formfinding of a pneumaticushion is

1
N :Evth— P(X=%) = Py (Y= Y¥o) = P,(z=2) - p(V -V,) = stat

The derivation of the total energy to the unknowrdinates and to the unknown
internal pressure ends up with
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In the system (2) the internal pressyrecan be seen as a so-called Lagrange
multiplier. The fourth column in (2) shows, thatrdoundary conditio’V =V, is

obtained by the derivation of the energy to thigramge multiplier. The vector

ov dv oV _ o , :
(— —— ——) describes the normal direction in the pdjnty, z)and the size

ox oy o0z
is the according area. By a set of given force-iessfor all elements and also a
given volumeV, we end up with a pre-stressed and of course balapoeumatic
system with a volum¥, and an internal pressupg.

Each additional chamber leads to an additional Melland Lagrange multiplier,
which allows to calculate multi-chambered cushitsee Fig.2).

Figure2: 2 chambers with 3 layers.

The force-densitieg] and the internal pressup are not independent from each
other. We are going to show it with the followiriggle-chamber-example.

Example 1:

The Volume Formfinding example has the geom@@ymby 10 m The required
volumeV, of a single chambered-cushiordi80 ni. A stress distribution of kN/m
in both directions leads to an internal pressur@ b8 kN/m. The sag i4.95 m



Although the engineer likes this result with regpecits geometry, it may happen
that he wants to get a higher internal pressu@pasating pressure (e @.35kN/m).

In this case he simply has to use a higher pres@&5 /0.16*1 kN/m= 2.1875
kN/min order to get the desired pressureO85 kN/mM. The geometry remains
unchanged.

The rule is: the stresses are proportional to titermal pressure. So we notice
O = [, in case of non-changing geometry in the Volume Fioring procedure.

We want to point out again, that in the Volume Fimding no material properties
are used, only force-densities in all elements aulgsired volume are inputted and
then we receive the form by solving system (2).dllgitthe additional external loads

(P« Py, Py) do not exist.
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Figure 3: Pneumatic chamber



2 Statical Analysis of Pneumatics

M embr ane Elements

We extend the form-finding theory by introducing ttonstitutive equations for the
membrane elements to the system (1). Now the foecssitiesq from the form-
finding are unknowns and they belong to the mdteqaations.

Ju rTlll mlz 0 gu

Uu = rnZZ O ‘Ev
r sym mg, || Ay
We have to consider, that the membrane axial-siress or v- direction can be
S
expressed ag’, = b—“ and 0, = % b, and K are the widths of the- andv-
u

lines. The force-densities can be introduced now as, =q,l, andS, =q,l,.
The strains inu- andv-direction can be written as follows:

£, = L ~lio and &, il . The angle differencd\y = = )/, is needed
u0 vO

for the shear-stress calculatiop. is the angle betweanandv-direction; ) refers

to the ‘non-deformed start-situation’ without amear-stress.

The geometrical compatibility has to be considexgdollows:

== =X )2+ (Y~ Y+ (2 -2)° and y=arccosm—lv). in

which (I, * |,) means the inner (scalar-) product betwe@mdv-direction.

The shear-stress calculation is guaranteed alsa fmontinuous membrane by the
fact that the shear angle is between the non-defdnm and v-direction of the
material [4].

Now we show an example iRig. 3 with isotropic material (e.g. ETFEOOLM)

which is given by only aE-modulus and Poisson’s ratio. With E =180kNni™*
andv = 033 we receive the relations

m, m, O . 1 v 0 202 67 O
m, 0 |= 1= 1 0 = 202 O
sym m,, sym L-v)/2 sym 67

in the unitskNm™*. After having introduced this material properties eedculate 3
load cases, showing the different possibilitie8/olume Statical Analysis’.



LC 1: Permanent Snow Load (steered by a fixed inner pressure (Pi=prixed))

The snow loads are only on the top-layer of thénimrs The operating pressure is
increased in winter fromd.35 kN/m to 1.00 kN/m under a large permanent snow
load of 0.9 kN/mM. As we can see immediately, in the top layer the brame
stresses are reduced and in the bottom layer we dteasses up to almaskN/m.

Membrane Stress (forcefwidth)
I 543677
409-543
276-409
N 1 42-276
B D05 142

Figure 4: Cushion under snow loading
LC 2: Fast wind pressure. (steered by gas-law (pV=constant))

The wind pressure loads are only on the top-layeh® cushion. We assume the
wind gust so fast, that the gas-law can be used.operating pressure before wind
loading is0.35 kN/m. It is increased by the gas-law@a45kN/ri and the volume is
decreased from00nT to 399.6m. The behavior in its quality is very similar to LC
1, but here the gas law is valid. The product fgymand V, before loading is
identical to the produgb, andV, under wind pressure loads. The gas law in our

example i{p, + P,)V, = (P, + Py)V, . We have to consider that in the gas law

the absolute pressure and not the difference presswapplied. In the gas law we
always have to add the atmospheric prespgr€l00.0 kN/rf) to the difference
pressure; or py). With our number we get00.35*400.0=100.45*399.6=40140
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Figure5: Cushion under wind pressure



LC 3: Fast wind overall suction. (steered by gas-law (pV=constant))

The wind loads are on the top and on the bottorerlaf the cushion. The operating
pressure is decreased fré35 kN/m to -0.42 kN/miand the volume is increased to
to 403.1m. In this example the gas law is very helpful; thembrane stresses
remain moderate, because of the strongly decreasser pressure (even to
negative).

Membrane Stress (farce/width)
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Figure 6: Cushion under wind suction

In our example the outer boundary was assumed fixdxd But in reality we have a
bending stiff frame with a specific stiffness aXibility. In order to take these facts
into consideration we have to extend our modeldnyding elements.

Beam Elements

The internal energy of beam element can be exmtdassthe already known form
1
= V'RV. Therefore we have to introduce angles being useth& formulation of

the inner energy. A bending element connectad-gbint and an end-point. The
angle between the direct line between start- addoémt and the direction of the real

axis in the start point is calledv,,,,,. On the end point we have the angd,,.

Those 2 angles are measured in th&projection of the local coordinate-system,
which is updated in each iteratiaV,, = Ny, + Ny  and

start
Ny = OV, N, Analogue for the angle)W in the u,vplane. For the

stat | e

torsion we introduce an angl@ . This angle is found as follows: the 3D rotatidn o
the starting-point with respect to the updated ll@mmordinate system is executed
with respect to/- andw-axis in the starting and ending point. The angfiieience in
the v, wplane between starting and ending is cak®t. The axial force is simple.
The difference between stressed lergiimd unstressed lengtis measured. Now

81

the inner energy of one bending element can bdenris Z:—\/izl’i and more
i=1

detailed:
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We change our system from the example by creatingesbeam as boundary. In the
LC snow we can see the bending moments (arguaddw-axis) in the beam-ring.

Example 2:

Figure 6: Cushion under wind suction

The Volume Formfinding example has a circular getoyneith a diameter 06 m.
The required volum¥, of the upper chamber i n? and of the lower chambér
m® . With a desired stress distribution bkN/min both directions in all layers we
end up with the result in Fig. 7.

L . ]

Figure 7: 2-chamber-cushion (exploded)



The upper chamber is defined by the red and viaktgles; the lower chamber by
the violet and green triangles. We receive in tr@uvhe Formfinding result an
internal pressure d.33 kN/mi in the upper chamber, afid30 kN/m in the lower
chamber In this example we want to put the focus onto ths aw within our
theory: therefore we define in the first loadcak€Y) a fast windgust (overall
suction) and we maintain the operating press&8and0.30 kN/mi). We assume
in a second loadcase (LC 2) the gas-law to be vtilisl means: the product from the
absolute internal pressure with its volume remaorsstant during wind-loading.

LC 1: Fast wind overall suction: steered by internal pressure
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Figure 8: Large deflections and large membrane stresses

Here the membrane stresses are very high: therréasample; the constant internal
pressure and the overall wind-suction have the sdineetions; the membrane is
loaded by superimposed loads; therefore the stesseup to almo& kN/m
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LC 2: Fast wind overall suction: steered by gas-law

Now the internal pressures are decreased;-0m98 kN/min the upper chamber and
-0.95 kN/rfiin the lower chamber remain. The volumes incread@1135 m in the
upper and t09.100 ni in the lower chamber.These facts are essential for the
stresses: they are very moderate (apptdetN/n).
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Figure 9: Small deflections and small membrane stresses

The combination of membrane-elements, cables, ssttutam-elements together
with constraints as gas-law, constant inner pressurolume in one or any number
of chambers can be managed with the shown theory.

Figure 10: Deflections and internal moments
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3 Cutting Patternsof Pneumatics

The calculation of cutting patterns should be dforeall cushions but especially
also for ETFE foils with highest accuracy. Cushians mainly fixed by very non-
flexible or very stiff boundaries. Therefore we bawo chance to adjust an
inaccurate patterning as we can do it in case ed fsoundaries (e.g. cables in a
pocket) for mechanically stressed membranes. lardadavoid waste of material we
have to adjust the maximum patterning widths to rble widths (or in whole-
number parts of it). The maximum widths of cushpatterns lie in ridge line.
Therefore an automatic widths-optimisation is plalssusing this line as guide-line.

— /
Ly

Figure 11: Cushion with geodesic lines

We simply generate points on this line having tietashce of the desired cloths-
widths. Now geodesic lines - which are perpendicuta the ridge-line - are
produced automatically. Then the flattening proceds executed: seam-allowances
and welding marks are generated to simplify theledpooduction-line. Also quality
numbers are calculated, they can be used to chidlek widths are small enough to
get well-stressed surfaces without any wrinklese ihn-compensated and adjusted
boundary lines are absolutely as they have tolBe000and 20.000 m The area
differences between 3D cushion-area and 2D pattaes are smaller thah02%.
So a wrinkle-free cushion is guaranteed.
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Figure 12: Flattened patterns

Often we have to consider in the patterning prooefor ETFE cushions, that the
seams in the fixed boundaries from upper and Idayenr are not at the same
position. We support our clients by showing thensga.g. from the upper layer
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during the patterning procedure of the lower lagarthe gaps in between different
layers can simply be managed.
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Figure 13: Gap optimisation
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